首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14) catalyzes the transfer of the amide group of glutamine to 5-phospho-α- -ribose-1-pyrophosphate. It is the first enzyme committed to the synthesis of purines by the de novo pathway. Previous assays of enzyme activity have either measured the phosphoribosylpyrophosphate-dependent disappearance of radioactive glutamine or have linked this reaction to subsequent steps in the purine pathway. A new assay for activity of the enzyme by directly measuring the synthesis of the product of the reaction, 5-β-phosphoribosyl-1-amine, using [1-14C]phosphoribosylpyrophosphate as substrate is described. Substrate and product are separated by thin-layer chromatography and identified by autoradiography. Glutamine or ammonia may be used as substrates; the apparent Km values of the human lymphoblast enzyme are 0.46 m for glutamine and 0.71 m for ammonia. GMP is a considerably more potent inhibitor of the human lymphoblast enzyme than is AMP; 6-diazo-5-oxo- -norleucine inhibits only glutamine-dependent activity and has no effect on ammonia-dependent activity.  相似文献   

2.
A simple two-step method for the purification of malic enzyme from bovine heart mitochondria in high yield is described. It consists of successive affinity chromatography steps on immobilized C8-(aminohexyl)-NADP and N6-(aminohexyl)-ADP. The molecular weight estimated by gel filtration of the homogeneous enzyme is 250,000 and the subunit molecular weight by SDS-polyacrylamide gel electrophoresis is 59,000.  相似文献   

3.
D A Bernlohr  R L Switzer 《Biochemistry》1981,20(20):5675-5681
The inactivation of glutamine phosphoribosylpyrophosphate amidotransferase by reaction of its iron-sulfur center with O2 is believed to be a physiologically important mode of regulation of this enzyme in Bacillus subtilis cells in the stationary phase of growth. Chemical and physical changes accompanying oxidation of the purified enzyme by O2 were studied. The iron of the 4Fe-4S center was oxidized to enzyme-bound high-spin Fe3+; the S2- was oxidized to a mixture of S0 bound as thiocystine and unidentified products. The oxidant appeared to be O2, rather than peroxide, superoxide, hydroxyl radical, or singlet oxygen. Gross physical changes in the oxidized enzyme were shown by its aggregation, decreased solubility, and altered circular dichroic spectrum. Experimental variables affecting the rate of oxidative inactivation were described; the most important of these was modulation of rates of inactivation by the allosteric inhibitors AMP, ADP, GMP, GDP and by the substrate P-Rib-PP. AMP was a potent stabilizer, whose effect was antagonized by P-Rib-PP. The other nucleotides, either acting singly or acting as synergistic pairs, were destabilizers and able to antagonize stabilization by AMP. The results are discussed in terms of the regulation of the stability of amidotransferase and its degradation in vivo.  相似文献   

4.
Coupling of N6-(aminohexyl)-adenosine 2′,5′-bisphosphate to BrCN-activated agarose was exploited to develop a simple procedure by which homogeneous glucose 6-phosphate dehydrogenase can be isolated in good yield and in a short time (2 days) from human erythrocytes. The method involves three steps, i.e., chromatography on DEAE-Sephadex, chromatography on phosphocellulose and affinity chromatography on the above ligand-matrix complex. This procedure is applicable for the purification of glucose 6-phosphate dehydrogenase from single donors.  相似文献   

5.
Glutamine phosphoribosylpyrophosphate amidotransferase is stable in growing cells, but is inactivated in an oxygen-dependent process at various rates in starving or antibiotic-treated cells. On the basis of studies of the purified enzyme, we suggested (D.A. Bernlohr and R.L. Switzer, Biochemistry 20:5675-5681, 1981) that the inactivation in vivo was regulated by substrate stabilization and a competition between stabilizing (AMP) and destabilizing (GMP, GDP, and ADP) nucleotides. This proposal was tested by measuring the intracellular levels of these metabolites under cultural conditions in which the stability of the amidotransferase varied. The results established that the stability of amidotransferase in vivo cannot be explained by the simple interactions observed in vitro. Metabolite levels associated with stability of the enzyme in growing cells did not confer stability under other conditions, such as ammonia starvation or refeeding of glucose-starved cells. The data suggest that a previously unrecognized event, possibly a covalent modification of amidotransferase, is required to mark the enzyme for oxygen-dependent inactivation.  相似文献   

6.
Glutamine phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14) catalyzes the transfer of the amide group of glutamine to 5-phospho-alpha-D-ribose-1-pyrophosphate. It is the first enzyme committed to the synthesis of purines by the de novo pathway. Previous assays of enzyme activity have either measured the phosphoribosylpyrophosphate-dependent disappearance of radioactive glutamine or have linked this reaction to subsequent steps in the purine pathway. A new assay for activity of the enzyme by directly measuring the synthesis of the product of the reaction. 5-beta-phosphoribosyl-1-amine, using [1-14C]phosphoribosylpyrophosphate as substrate is described. Substrate and product are separated by thin-layer chromatography and identified by autoradiography. Glutamine or ammonia may be used as substrates; the apparent Km values of the human lymphoblast enzyme are 0.46 mM for glutamine and 0.71 mM for ammonia. GMP is a considerably more potent inhibitor of the human lymphoblast enzyme than is AMP; 6-diazo-5-oxo-L-norleucine inhibits only glutamine-dependent activity and has no effect on ammonia-dependent activity.  相似文献   

7.
The behavior of mammalian phosphofructokinase on immobilized adenine nucleotides was investigated. Three different insolubilized ligands were compared using a pure rabbit muscle phosphofructokinase. N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose bound at least 90 times more enzyme than either N6-(6-aminohexyl)-AMP-agarose or ATP-adipic acid hydrazide-Sepharose. The elution of phosphofructokinase from the ATP-Sepharose with various metabolites and combinations of metabolites was investigated. The enzyme is eluted specifically from N6-[(6-aminohexyl)-carbamoyl]-ATP-Sepharose with a mixture of 25 μm each of fructose 6-phosphate and ADP (±Mg2+). The enzyme is not eluted either with ATP (25 μm), fructose 1,6-diphosphate (1 mm), ADP (25 μm), fructose 6-phosphate (1 mm) alone, or with a mixture of fructose 1,6-diphosphate (25 μm) and ATP (25 μm). The recovery of bound enzyme was usually greater than 90%. A mixture of glucose 6-phosphate and ADP or a mixture of IDP and fructose 6-phosphate also elutes the enzyme, but the recovery with these eluants was only about 40%. It was concluded that the “dead-end” complex is the most effective in the elution. Using this method, phosphofructokinase has been prepared in an essentially homogeneous form from muscle and brain of rabbit and rat. The overall isolation procedure involves a high speed centrifugation of crude extracts which sediments phosphofructokinase as a pellet, followed with adsorption on N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose and specific elution with the mixture of fructose 6-phosphate and ADP.  相似文献   

8.
Reaction of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase with 6-diazo-5-oxo-L-norleucine resulted in complete loss of its ability to catalyze glutamine-dependent phosphoribosylamine formation and its glutaminase activity, whereas its ability to catalyze ammonia-dependent phosphoribosylamine formation and to hydrolyze phosphoribosylpyrophosphate was increased. The site of reaction with 6-diazo-5-oxo-L-norleucine was the NH2-terminal cysteine residue. The NH2-terminal sequence of the B. subtilis enzyme was homologous with that of the corresponding amidotransferase from Escherichia coli, for which the NH2-terminal cysteine is also essential for glutamine utilization (Tso, J. Y., Hermodson, M. A., and Zalkin, H. (1982) J. Biol. Chem. 257, 3532-3536). The fact that the metal-free E. coli amidotransferase contains a glutamine-utilizing structure that is very similar to that found in B. subtilis amidotransferase, which contains an essential [4Fe-4S] center, indicates that the iron-sulfur center probably plays no role in glutamine utilization.  相似文献   

9.
Crystal structures of glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase from Escherichia coli have been determined to 2.0-A resolution in the absence of ligands, and to 2.5-A resolution with the feedback inhibitor AMP bound to the PRPP catalytic site. Glutamine PRPP amidotransferase (GPATase) employs separate catalytic domains to abstract nitrogen from the amide of glutamine and to transfer nitrogen to the acceptor substrate PRPP. The unliganded and AMP-bound structures, which are essentially identical, are interpreted as the inhibited form of the enzyme because the two active sites are disconnected and the PRPP active site is solvent exposed. The structures were compared with a previously reported 3.0-A structure of the homologous Bacillus subtilis enzyme (Smith JL et al., 1994, Science 264:1427-1433). The comparison indicates a pattern of conservation of peptide structures involved with catalysis and variability in enzyme regulatory functions. Control of glutaminase activity, communication between the active sites, and regulation by feedback inhibitors are addressed differently by E. coli and B. subtilis GPATases. The E. coli enzyme is a prototype for the metal-free GPATases, whereas the B. subtilis enzyme represents the metal-containing enzymes. The structure of the E. coli enzyme suggests that a common ancestor of the two enzyme subfamilies may have included an Fe-S cluster.  相似文献   

10.
Two forms (F-I and F-II) of 5′-nucleotidases (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) which catalyze the dephosphorylation of N6-(Δ2-isopentenyl)adenosine 5′-monophosphate and AMP to form the corresponding nucleosides were partially purified from the cytosol of wheat (Triticum aestivum) germ. Both the F-I (molecular weight, 57,000) and F-II (molecular weight, 110,000) 5′-nucleotidases dephosphorylate the ribonucleotides at an optimum pH of 7. The Km values for the cytokinin nucleotide are 3.5 micromolar (F-I enzyme) and 12.8 micromolar (F-II enzyme) in 100 millimolar Tris-maleate buffer (pH 7) at 37 C. The F-I enzyme is less rapidly inactivated by heating than is the F-II enzyme. Both nucleotidases hydrolyze purine ribonucleoside 5′-phosphates, AMP being the preferred substrate. N6-(Δ2-isopentenyl)Adenosine 5′-monophosphate is hydrolyzed at a rate 72 and 86% that of AMP by the F-I and F-II nucleotides, respectively. Phenylphosphate and 3′-AMP are not substrates for the enzymes. It is proposed that dephosphorylation of cytokinin nucleotide by cytosol 5′-nucleotidases may play an important role in regulating levels of “active cytokinin” in plant cells.  相似文献   

11.
12.
Adenosine aminohydrolase from calf intestinal mucosa is sensitive to changes in the cooperative water structure of its environment as induced by the cosolvent dioxane. When dioxane is added to lower the dielectric constant from that of 78 of neat water to about 74, V is approximately halved, competitive inhibition by N6-(Δ2-isopentenyl)adenosine is virtually abolished, and competitive inhibition by the product of the reaction, i.e., inosine, is significantly decreased (Ki changes from 0.2 to 0.5 mm inosine). Yet Km remains unaltered at 40 μm adenosine even to a dielectric constant of 66.Since both N6-(Δ2-isopentenyl)adenosine and inosine are competitive inhibitors, they cannot be bound by the enzyme at the same time as adenosine. The fact that substrate binding remains unaltered at dielectric constants where these inhibitors are impotent indicates that binding of these inhibitors by portions of the enzyme not directly involved in substrate binding is important. The degree of alteration of binding with increasing dioxane concentration is different for these two inhibitors, with appreciable inosine binding at mole fractions dioxane where N6-(Δ2-isopentenyl)-adenosine binding cannot be demonstrated. Because of this differential effect of dioxane on inosine and N6-(Δ2-isopentenyl)adenosine binding, it is apparent that two substances can be competitive inhibitors kinetically and yet be bound differently by an enzyme. Cosolvents may thus be useful probes for the study of enzyme inhibitor interactions. It is proposed that studies of cosolvent effects on enzyme catalysis and substrate and inhibitor binding are capable of revealing the sensitivities of these various sites to alterations in the dielectric constant of the medium and thus may be considered as models for enzyme behavior near cytoplasmic membranes in vivo.  相似文献   

13.
The effects of imidazole on the hydrolysis of cyclic AMP and cyclic GMP by crude and partially purified phosphodiesterases obtained from bovine heart and rat liver were studied in order to determine if imidazole has an activity on cyclic nucleotide hydrolysis under conditions which might explain its ability to antagonize the effects of several hormones. Imidazole-Cl (40 mm, pH 7.4) had no effect on the hydrolysis of cyclic AMP or cyclic GMP at substrate levels below 10 μm by the crude enzymes but increasing stimulation was observed with increasing substrate concentrations reaching a twofold stimulation at 1 mm cyclic nucleotide. Three phosphodiesterases with varying substrate specificities were partially purified from bovine heart by ammonium sulfate precipitation and diethyl aminoethyl cellulose chromatography. With these enzymes imidazole had less stimulatory activity and some inhibitory effect on the hydrolysis of 10?4m cyclic AMP and cyclic GMP but was without significant effect on the hydrolysis of 10?6m cyclic AMP or cyclic GMP. The stimulatory activity of imidazole on the hydrolysis of high levels of cyclic nucleotide was dependent on the presence of phosphodiesterase activator. The stimulatory effect of the activator and imidazole plus activator on the hydrolysis of 10?4m cyclic GMP by the rather cyclic GMP-specific enzyme could be eliminated by the addition of ethylene glycol-bis-(β-aminoethyl ether)N,N′-tetraacetate (EGTA) and restored by Ca2+. Imidazole was without effect on the binding of cyclic AMP to a cyclic AMP-dependent protein kinase from bovine heart. The lack of effect of imidazole on the hydrolysis of physiological levels of cyclic AMP or cyclic GMP suggests that the activity of imidazole to antagonize the effects of various hormones is probably not due to a direct action of imidazole on the hydrolysis of cyclic AMP or cyclic GMP.  相似文献   

14.
Adenine phosphoribosyltransferase (AMP:pyrophosphate phosphoribosyltransferase EC 2.4.2.8) which catalyzes the phosphoribosylation of cytokinin bases and adenine to form the corresponding nucleotides were partially purified from the cytosol of wheat (Triticum aestivum) germ. This enzyme (molecular weight, 23,000 ± 500) phosphoribosylates the bases at an optimum Mg2+ concentration of 5 mm and optimum pH of 7.5 (50 mm Tris-HCl buffer). Km values for N6-(Δ2-isopentenyl)adenine, N6-furfuryladenine, N6-benzyladenine, and adenine are 130, 110, 154, and 74 μm, respectively, in 50 mm Tris-HCl buffer (pH 7.5) at 37 °C. Hypoxanthine and guanine are not substrates for the enzyme. In concerting with other cytokinin metabolic enzymes, this enzyme may play a significant role in maintaining the supply of adequate levels of “active cytokinin.”  相似文献   

15.
The oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase (ATase) is demonstrated in cell extracts of Bacillus subtilis. The rate of inactivation of ATase in vitro is apparently first order with respect to oxygen concentration and ATase activity. ATase inactivation in vitro (or in vivo) cannot be reactivated by a variety of reductants. ATase is significantly stabilized to oxygen-dependent inactivation in vitro in the presence of tetrasodium phosphoribosylpyrophosphate and glutamine together. The effects of the end product inhibitors, adenosine 5-monophosphate (AMP) and guanosine 5-monophosphate (GMP), on the stability of ATase are antagonistic. AMP stabilizes ATase, whereas GMP destabilizes the enzyme. The stability of ATase can be manipulated over wide ranges by variations in the AMP/GM ratio. The effects of AMP and GMP on the inactivation of ATase in vitro are very specific. ATase is partially inhibited by 1,10-phenanthroline, suggesting that the enzyme contains iron (or some other chelatable metal ion). The inactivation of ATase in vitro is proposed to present a model for the reconstruction of the inactivation of ATase in stationary-phase cells of B. subtilis.  相似文献   

16.
The NAD glycohydrolase (NADase) from Bungarus fasciatus snake venom was adsorbed on concanavalin A-Sepharose, and demonstrated to retain both hydrolase and transglycosidase activities in the bound form. The matrix-bound enzyme was stable to repeated washing with buffer and storage at 4°C. The bound enzyme exhibited the same Km value for hydrolysis of nicotinamide-1,N6-ethenoadenine dinucleotide as previously measured with the soluble, purified form of the enzyme. The bound NADase was used repeatedly for a preparative-scale synthesis of 3-acetylpyridine adenine dinucleotide. It was further demonstrated that the immobilized enzyme could be prepared directly from crude snake venom, thus avoiding the time required for purification. The application of the immobilized snake venom NADase for the preparation of pyridine nucleotide coenzyme analogs has many advantages over procedures used previously for analog synthesis.  相似文献   

17.
An enzyme fraction from aged swede root disks catalyses the formation of CoA thioesters of cinnamic acids in the presence of CoA, ATP and Mg2+. The enzyme shows activity only to those cinnamic acid derivatives bearing a phenolic OH group, p-coumaric and ferulic acids being the most active substrates. The requirement for Mg2+ can be replaced by Mn2+, Co2+ or Ni2+. The requirement for ATP could not be replaced by GTP, CTP, UTP, ADP or AMP. ADP and AMP, but not pyrophosphate, inhibited the ATP dependent activation of p-coumarate. The activity was inhibited by N-ethylmaleimide and p-chloro-mercuribenzoate which suggests a requirement for -SH groups for activation. The activity of the enzyme is low in freshly prepared disks but rises during ageing, particularly if the ageing is carried out in the presence of low concentrations of ethylene.  相似文献   

18.
As part of the study of cytokinin metabolic pathways, an enzyme, adenosine phosphorylase (EC 2.4.2.-), which catalyzed the ribosylation of N6-(Δ2-isopentenyl)adenine, N6-furfuryladenine, and adenine to form the corresponding nucleosides, was partially purified from wheat (Triticum aestivum) germ. The pH optimum for the ribosylation of the cytokinins and adenine was from 6.5 to 7.8; for guanine and hypoxanthine it was from 7.0 to 8.5 At pH 7.2 (63 millimolar N-2-hydroxyethyl piperazine-N′-ethanesulfonic acid) and 37 C the Km for N6-(Δ2-isopentenyl)adenine was 57.1 micromolar; N6-furfuryladenine, 46.5 micromolar; adenine, 32.2 micromolar; and the Vmax for N6-(Δ2-isopentenyl)adenine, N6-furfuryladenine, and adenine were 134.7, 137.1, and 193.1 nanomoles per milligram protein per minute, respectively. The equilibrium constants of the phosphorolysis of N6-(Δ2-isopentenyl)adenosine and adenosine by this enzyme indicated that the reaction strongly favored nucleoside formation. This enzyme was shown to be distinct from inosine-guanosine phosphorylase based on the differences in the Sephadex G-100 gel filtration behaviors, pH optima, and the product and p-hydroxymercuribenzoate inhibitor studies. These results suggest that adenosine phosphorylase may play a significant role in the regulation of cytokinin metabolism.  相似文献   

19.
Cyclic AMP phosphodiesterase from Saccharomyces cerevisiae was purified about 20,000-fold to homogeneity. The purified enzyme had a molecular weight of about 60,000 as estimated by gel filtration.The enzyme activity was optimal at pH 8.5–9.0 and was not stimulated by imidazole. Among cyclic 3′,5′-nucleotides, cyclic AMP was the most active substrate for the purified enzyme (Km = 0.25 mM), but it was inhibitory at concentrations above 4 mm. N6,O2′-dibutyryl cyclic AMP was not hydrolyzed at all.Unlike other cyclic AMP phosphodiesterases from various sources, the purified yeast enzyme did not require divalent metal ions for maximal activity and was rather inhibited in various degrees by added metal ions. The enzyme was not very sensitive to thiol inhibitors.The purified yeast enzyme was strongly inhibited by theophylline and slightly by caffeine. In contrast to the enzyme from S. carlsbergensis, the enzyme from S. cerevisiae was not inhibited at all by ATP or PPi.The enzyme activity was not released into the growth medium, and the intracellular distribution studies indicated that the enzyme was located mainly in the cytosol fraction.  相似文献   

20.
The formation of phosphoribosylpyrophosphate (PRPP) and adenosine 5′-monophosphate (AMP) from ribose 5-phosphate and adenosine 5′-triphosphate, catalyzed by purified PRPP synthetase from Salmonella typhimurium, was conducted in 18O-enriched water. The products were isolated, and inorganic phosphate was isolated from AMP and the pyrophosphoryl moiety of PRPP. Oxygen-18 was incorporated into PRPP but not into AMP. These results indicate that PRPP synthesis proceeds with scission of a βPO bond of adenosine 5′-triphosphate. Oxygen-18 enters PRPP by prior exchange of H218O into ribose 5-phosphate; the rate of this exchange was measured by combined gas chromatography-mass spectrometry of the trimethylsilyl derivative of ribose 5-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号