首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colicin M is an inhibitor of murein biosynthesis.   总被引:10,自引:7,他引:3       下载免费PDF全文
Colicin M inhibited the incorporation of DL + meso-2,6-diamino[3,4,5-3H]pimelic acid into the murein (peptidoglycan) of growing cells of Escherichia coli W7 dap lys. The inhibition of the UDP-N-acetylmuramyl pentapeptide-dependent incorporation of UDP-N-acetyl-D-[U-14C]glucosamine into isolated cell envelopes indicated interference with a late step of murein biosynthesis. After the inhibition of murein biosynthesis, cells lysed, and they released lysis products of murein. In vitro, the murein biosynthesis of colicin M-tolerant mutants (tolM) was inhibited by colicin M. Therefore, tolerance is probably conferred by an impaired uptake of an altered fixation close to the target site and not by a mutation of the target itself. Preliminary studies with beta-lactam antibiotics and with mutants in penicillin-binding proteins did not reveal a specific enzymatic step inhibited by colicin M. The unique action among the colicins renders colicin M a potentially useful tool for studying murein biosynthesis.  相似文献   

2.
Colicin M is unique among the colicins in that it causes lysis of cells. Synthesis of peptidoglycan was inhibited before colicin-induced cell lysis occurred. This suggested that inhibition of peptidoglycan synthesis was the primary effect of the colicin which was followed by cell lysis. Following colicin M treatment, soluble peptidoglycan nucleotide precursors accumulated, and radioactivity associated with the membrane-bound carrier lipid almost disappeared. Further metabolism of radiolabeled intermediates bound to the lipid carrier (lipid intermediates) was not inhibited by colicin M. The two lipid intermediates decreased to a level where equal amounts of both were present. The data indicated that translocation of nucleotide precursors to the lipid carrier was not inhibited. In vitro peptidoglycan synthesis agreed with the in vivo results. It is concluded that colicin M inhibits peptidoglycan biosynthesis by preventing regeneration of the lipid carrier.  相似文献   

3.
Inhibition of lipopolysaccharide O-antigen synthesis by colicin M   总被引:8,自引:0,他引:8  
Colicin M inhibits peptidoglycan biosynthesis at the level of the bactoprenyl carrier lipid. Since the synthesis of O-antigen also requires bactoprenyl carrier lipid, the effect of colicin M on O-antigen biosynthesis was studied using a colicin-sensitive strain of Salmonella typhimurium. Determination of O-antigen intermediates by two different methods showed that bactoprenyl-dependent O-antigen biosynthesis was inhibited by colicin M. Synthesis of both O-antigen and peptidoglycan was almost immediately inhibited following colicin addition. This was followed some 20 min later by cell lysis. The only known common step between O-antigen and peptidoglycan synthesis is formation of bactoprenyl phosphate by dephosphorylation of bactoprenyl pyrophosphate. Determination of bactoprenyl phosphates showed an accumulation of bactoprenyl pyrophosphate in colicin-treated cultures. It was concluded that dephosphorylation of the bactoprenyl lipid carrier was inhibited by colicin M, and this in turn prevented both O-antigen and peptidoglycan synthesis.  相似文献   

4.
Abstract This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma , has been sequenced and the protein isolated and purified. With a deduced molecular size of 29 453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13 890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

5.
The biology of colicin M   总被引:4,自引:0,他引:4  
This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma, has been sequenced and the protein isolated and purified. With a deduced molecular size of 29,453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13,890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

6.
Colicin M was earlier demonstrated to provoke Escherichia coli cell lysis via inhibition of cell wall peptidoglycan (murein) biosynthesis. As the formation of the O-antigen moiety of lipopolysaccharides was concomitantly blocked, it was hypothesized that the metabolism of undecaprenyl phosphate, an essential carrier lipid shared by these two pathways, should be the target of this colicin. However, the exact target and mechanism of action of colicin M was unknown. Colicin M was now purified to near homogeneity, and its effects on cell wall peptidoglycan metabolism reinvestigated. It is demonstrated that colicin M exhibits both in vitro and in vivo enzymatic properties of degradation of lipid I and lipid II peptidoglycan intermediates. Free undecaprenol and either 1-pyrophospho-MurNAc-pentapeptide or 1-pyrophospho-MurNAc-(pentapeptide)-Glc-NAc were identified as the lipid I and lipid II degradation products, respectively, showing that the cleavage occurred between the lipid moiety and the pyrophosphoryl group. This is the first time such an activity is described. Neither undecaprenyl pyrophosphate nor the peptidoglycan nucleotide precursors were substrates of colicin M, indicating that both undecaprenyl and sugar moieties were essential for activity. The bacteriolytic effect of colicin M therefore appears to be the consequence of an arrest of peptidoglycan polymerization steps provoked by enzymatic degradation of the undecaprenyl phosphate-linked peptidoglycan precursors.  相似文献   

7.
Binding of the immunity protein inactivates colicin M   总被引:3,自引:2,他引:1  
Colicin M (Cma) displays a unique mode of action in that it inhibits peptidoglycan and lipopolysaccharide biosynthesis through interference with bactoprenyl phosphate recycling. Protection of Cma-producing cells by the immunity protein (Cmi) was studied. The amount of Cmi determined the degree of inhibition of in vitro peptidoglycan synthesis by Cma. In cells, immunity breakdown could be achieved by overexpression of the Cma uptake system. Full immunity was restored after raising the cmi gene copy number. In sphaeroplasts, Cmi was degraded by trypsin, but this could be prevented by the addition of Cma. The N-terminal end includes the only hydrophobic amino acid sequence of Cmi, suggesting a function in anchoring of Cmi in the cytoplasmic membrane. It is proposed that Cmi does not act catalytically but binds Cma at the periplasmic face of the cytoplasmic membrane, thereby resulting in Cma inactivation. Two other possible modes of colicin M immunity, interference of Cmi with the uptake of Cma, and interaction of Cmi with the target of Cma, were ruled out by the data.  相似文献   

8.
Colicin B: mode of action and inhibition by enterochelin   总被引:27,自引:19,他引:8  
Adsorption of colicin B to a sensitive strain of Escherichia coli results in rapid cessation of deoxyribonucleic acid, ribonucleic acid, and protein synthesis. Some classes of mutants insensitive to colicin B hyperexcrete a colicin inhibitor into their growth medium. This inhibitor functions by preventing adsorption of colicin B and does not rescue cells to which colicin has already adsorbed. The inhibitor is insensitive to nucleases, proteolytic enzymes, and lysozyme and is not extracted into organic solvents. The inhibitory material has a low molecular weight, which rules out identification as lipopolysaccharide, although purified lipopolysaccharide has some inhibitory activity. Evidence is presented that the inhibitor is enterochelin, an iron chelator which is the cyclic trimer of 2,3-dihydroxybenzoylserine. Enterochelin does not inhibit colicin M, a colicin that is produced by many strains colicinogenic for colicin B.  相似文献   

9.
We studied regularities of the spontaneous synthesis of colicin E1 and its regulatory role in the survival of each cell and the population. For the first time, colicin from spontaneously induced cells was isolated and characterized, and the kinetics of its synthesis determined in a separate cell. It was stated that the time of colicin accumulation in an induced cell and the half-time period of a similar cell exceeds the period of cell doubling by 1.5 and 2 times, respectively. Spontaneously synthesized colicin was shown not to differ from the colicin synthesized by using inductors of the SOS-system of cell reparation. A conception was formulated of a biological system containing both colicinogenic cells with plasmids with encoded proteins of colicin, immunity and lysis on them and competitive plasmid-free cells sensitive or resistant to colicin. Environment dependent colicin synthesis in the system shown is regarded as regulator functioning according to the feed-back principle.  相似文献   

10.
A mutant sensitive to colicin M at 30 degrees C and tolerant at 42 degrees C to high concentrations of colicin M was isolated from Escherichia coli K-12. A temperature shift from 30 to 42 degrees C rescued all cells up to the time they started to lyse at 30 degrees C (25 min after addition of colicin M). The growth rate at 42 degrees C remained unaffected by colicin M. AT 42 degrees C the cell-bound colicin M was inactivated by trypsin, sodium dodecyl sulfate, and antiserum against colicin M. Ferrichrome competed with colicin M at 42 degrees C only during the initial adsorption to the common receptor protein in the outer membrane. Since cells lysed earlier at 30 degrees C when they had been preincubated with colicin M at 42 degrees C, we conclude that the process leading finally to cell lysis is initiated at 42 degrees C and stops at a later stage of colicin M trypsin, dodecyl sulfate, and antiserum when cells were transferred from 30 to 42 degrees C, we assume that colicin M is translocated from its target site towards the cell surface. The mutation conferring tolerance was mapped close to the rpsL gene.  相似文献   

11.
The DNA sequence of the colicin M activity gene cma was determined. A polypeptide consisting of 271 amino acids was deduced from the nucleotide sequence. The amino acid sequence agreed with the peptide sequences determined from the isolated colicin. The molecular weight of active colicin M was 29,453. The primary translation product was not processed. In the domain required for uptake into cells, colicin M contained the pentapeptide Glu-Thr-Leu-Thr-Val. A similar sequence was found in all colicins which are taken up by a TonB-dependent mechanism and in outer membrane receptor proteins which are constituents of TonB-dependent transport systems. The structure of colicin M in the carboxy-terminal activity domain had no resemblance to the pore-forming colicins or colicins with endonuclease activity. Instead, the activity domain contained a sequence which exhibited homology to the sequence around the serine residue in the active site of penicillin-binding proteins of Escherichia coli. The colicin M activity gene was regulated from an SOS box upstream of the adjacent colicin B activity gene on the natural plasmid pColBM-Cl139.  相似文献   

12.
We show here that expression of the colicin gene of the ColE1 plasmid is greatly derepressed in Escherichia coli K-12 strain DM1187 spr tif sfi, which is a constitutive tif mutant, altered in the lexA gene, and which shows constitutive expression of various pathways of the recA-dependent, lexA-blocked (SOS) repair system. In this strain colicin E1 synthesis is at least 100-fold greater than that observed in uninduced control strains (spr+ tif sfi and spr+ tif+ sfi). This result confirms the regulatory role of the lexA product in colicin E1 synthesis. Colicin yields by the uninduced strain DM1187 are as high as the maximum yields from mitomycin-induced control strains and often are several-fold higher. When the nonconstitutive tif sfi strain GC467 is raised to 43 degrees C to induce the SOS system, a low level of colicin synthesis is observed which is less than one-tenth of the yield obtained by induction with mitomycin C. Addition of adenine at the time of shift-up can increase the colicin yield of tif sfi to about one-third of the yield obtained with mitomycin C. We have also found that colicin overproduction can be detected by altered colony appearance in an overlay assay with colicin-sensitive bacteria. In addition, the lethality of the process of colicin synthesis is observed here without the use of bacteriostatic inducing agents.  相似文献   

13.
Escherichia coli ompA mutants are tolerant to colicin L-JF246. This tolerance can be overcome by a variety of treatments that have as their target the outer membrane or the peptidoglycan layers of the cell envelope. Thus, increasing the concentration of colicin L, releasing lipopolysaccharide from the outer membrane by treatment of intact cells with ethylenediaminetetracetic acid (EDTA), converting cells to spheroplasts by treatment with lysozyme-EDTA or penicillin, or trypsin, treatment of intact cells will result in an increased colicin sensitivity. These treatments alter the outer membrane of ompA mutants and suggest that the altered outer membrane may allow the penetration of at least a portion of the colicin L molecule to a site of action located within this barrier. To substantiate this, we have demonstrated that membrane vesicles prepared from ompA mutants are sensitive to colicin L and that 14C-labeled colicin L binds rapidly to both the outer and inner membrane fractions of the cell.  相似文献   

14.
Colicin synthesis and cell death.   总被引:6,自引:6,他引:0       下载免费PDF全文
Colicin E1 is a small plasmid, containing the cea gene for colicin, the most prominent product of the plasmid. Colicin is a 56-kilodalton bacteriocin which is especially toxic to Escherichia coli cells that do not contain the plasmid. Under normal growth conditions very low levels of the plasmid are produced as a result of cea gene repression by the host LexA protein. Conditions that lower the concentration of LexA protein result in elevated levels of colicin synthesis. The LexA protein concentration can be lowered by exposing the cells to DNA-damaging reagents such as UV light or mitomycin C. This is because DNA damage signals the host SOS response; the response leads to activation of the RecA protease which degrades the LexA protein. DNA-damaging reagents result in very high levels of colicin synthesis and subsequent death of plasmid-bearing cells. Elevated levels of colicin are also produced in mutants of E. coli that are deficient in LexA protein. We found that comparably high levels of colicin can be produced in such mutants in the absence of cell death. In lexA strains carrying a defective LexA repressor, colicin synthesis shows a strong temperature dependence. Ten to twenty times more colicin is synthesized at 42 degrees C. This sharp dependence of synthesis on temperature suggests that there are factors other than the LexA protein which regulate colicin synthesis.  相似文献   

15.
Colicin M is only released in very low amounts by cells harbouring this plasmid encoded colicin, due to the lack of a release (lysis) protein. A fusion gene (lpp'cma) was constructed which determined two proteins: Lpp'-Cma composed of the signal sequence of the murein lipoprotein (Lpp) and colicin M (Cma), and unaltered colicin M. Cells expressing the fusion gene released 50% of the total colicin M into the culture medium, compared to 1% found in the medium of cells synthesizing only colicin M. The release resulted from partial cell lysis caused by colicin M since a colicin M tolerant strain remained unaffected. Lpp'-Cma thus mimics phenotypically the action of colicin release proteins but displays a different lysis mechanism. In strains defective in components of the colicin M uptake system, Lpp'-Cma caused lysis as effectively as in uptake proficient strains. Apparently, Lpp'-Cma renders the colicin M target site accessible from inside the cell which stands in contrast to the action of colicin M which is only bactericidal when provided from outside.Abbreviation bp base pairs  相似文献   

16.
17.
The high molecular weight penicillin-binding proteins (PBP(s) ) Bacillus subtilis PBPs 1, 2, and 4 and Bacillus stearothermophilus PBPs 1-4 were shown to catalyze peptidoglycan synthesis from the undecaprenol-containing lipid intermediate substrate in two assay systems. In a filter paper assay system, high levels of substrate polymerization occurred when reaction mixtures were incubated on Whatman 3MM filter paper. The pH optimum for peptidoglycan synthesis was 7.5 for B. subtilis PBPs 1, 2, and 4 and 8.5 for B. stearothermophilus PBPs 1-4. Polymerization was Mg2+-independent and was unaffected by sulfhydryl reagents. Reconstitution with membrane lipids or addition of detergent (optimal concentration, 0.1%) was necessary for synthesis to occur. Bacitracin, penicillin, and cephalothin did not affect polymerization while vancomycin, ristocetin, moenomycin, and macarbomycin were strong inhibitors. In a test tube assay system, optimal synthesis occurred either in the presence of 10% ethylene glycol, 10% glycerol, and 8% methanol or in the presence of 10% N-acetylglucosamine. The products of lysozyme digestion of the synthesized peptidoglycan were analyzed by gel filtration and paper chromatography. B. stearothermophilus PBPs 1-4 synthesized a peptidoglycan product that was 5-7% cross-linked. No evidence for cross-linking was apparent in the peptidoglycan product of B. subtilis PBPs 1, 2, and 4.  相似文献   

18.
Biosynthesis and export of colicin A in Citrobacter freundii CA31   总被引:5,自引:0,他引:5  
Synthesis of colicin A after induction with mitomycin C was studied. Specific inhibition of chromosomal protein synthesis occurred very shortly after mitomycin addition. There was no coordinate synthesis of colicin A (61000 Mr) and low-molecular-weight protein. Free and membrane-bound polysome fractions were isolated from cells induced with mitomycin C. Colicin A is synthesized in vitro in the free polysomes and not in the membrane-bound polysomes. Conditions are described which allow a practically specific labelling of colicin A in vivo. By using this system it was possible to demonstrate that colicin A is not transferred cotranslationally across the cytoplasmic membrane. In contrast, this protein leaves the cell where it was made long after synthesis. Preliminary evidence, suggesting that pauses occur during synthesis of colicin A, is presented.  相似文献   

19.
20.
T Chai  V Wu    J Foulds 《Journal of bacteriology》1982,151(2):983-988
ompF cells were completely resistant to colicin A, whereas btuB cells were partially resistant. The OmpF protein, in the presence of added lipopolysaccharide, inactivated colicin A. This inactivation was enhanced by added btuB gene product, btuB gene product with lipopolysaccharide did not inactivate colicin A. These data, together with the observation that vitamin B12 protected btuB+ cells from the killing effect of colicin A, suggest that the colicin A receptor in Escherichia coli K-12 is composed of the OmpF protein, the btuB gene product, and lipopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号