首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizobacteria with antagonistic activity towards plant pathogens play an essential role in root growth and plant health and are influenced by plant species in their abundance and composition. To determine the extent of the effect of the plant species and of the site on the abundance and composition of bacteria with antagonistic activity towards Verticillium dahliae, bacteria isolated from the rhizosphere of two Verticillium host plants, oilseed rape and strawberry, and from bulk soil were analysed at three different locations in Germany over two growing seasons. A total of 6732 bacterial isolates screened for in vitro antagonism towards Verticillium resulted in 560 active isolates, among which Pseudomonas (77%) and Serratia (6%) were the most dominant genera. The rhizosphere effect on the antagonistic bacterial community was shown by an enhanced proportion of antagonistic isolates, by enrichment of specific amplified ribosomal DNA restriction analysis types, species and genotypes, and by a reduced diversity in the rhizosphere in comparison to bulk soil. Such an effect was influenced by the plant species and by the site of its cultivation. Altogether, 16S rRNA gene sequencing of 66 isolates resulted in the identification of 22 different species. Antagonists of the genus Serratia were preferentially isolated from oilseed rape rhizosphere, with the exception of one site. For isolates of Pseudomonas and Serratia, plant-specific and site-specific genotypes were found.  相似文献   

2.
Isolates of Gaeumannomyces graminis var. tritici, the causal agent of take-all of wheat, varied in sensitivity in vitro to the antibiotics phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (Phl) produced by fluorescent Pseudomonas spp. shown previously to have potential for biological control of this pathogen. None of the four isolates of G. graminis var. avenae examined were sensitive to either of the antibiotics in vitro at the concentrations tested. The single isolate of G. graminis var. graminis tested was insensitive to PCA at 1.0 (mu)g/ml. Pseudomonas fluorescens 2-79 and Pseudomonas chlororaphis 30-84, both of which produce PCA, effectively suppressed take-all caused by each of two PCA-sensitive isolates of G. graminis var. tritici. PCA-producing strains exhibited a reduced ability or complete inability to suppress take-all caused by two of three isolates of G. graminis var. tritici that were insensitive to PCA at 1.0 (mu)g/ml. P. fluorescens Q2-87, which produces Phl, suppressed take-all caused by three Phl-sensitive isolates but failed to provide significant suppression of take-all caused by two isolates of G. graminis var. tritici that were insensitive to Phl at 3.0 (mu)g/ml. These findings affirm the role of the antibiotics PCA and Phl in the biocontrol activity of these fluorescent Pseudomonas spp. and support earlier evidence that mechanisms in addition to PCA are responsible for suppression of take-all by strain 2-79. The results show further that isolates of G. graminis var. tritici insensitive to PCA and Phl are present in the pathogen population and provide additional justification for the use of mixtures of Pseudomonas spp. that employ different mechanisms of pathogen suppression to manage this disease.  相似文献   

3.
带有硝酸盐利用缺陷型遗传标记的大丽轮技菌Verticilliumdahliae黑色菌核型和白色菌丝型菌株在25℃下配对培养,形成野生型融合菌落带,对融合带的分生孢子后代进行遗传分析的结果表明,融合带中的异核体表现不稳定,分布不均匀。微菌核遗传因子可随亲本细胞质在异核体中的运动和交换而发生迁移。  相似文献   

4.
带有硝酸盐利用缺陷型遗传标记的大丽轮技菌Verticilliumdahliae黑色菌核型和白色菌丝型菌株在25℃下配对培养,形成野生型融合菌落带,对融合带的分生孢子后代进行遗传分析的结果表明,融合带中的异核体表现不稳定,分布不均匀。微菌核遗传因子可随亲本细胞质在异核体中的运动和交换而发生迁移。  相似文献   

5.
The potential of bacteria that are adapted to the oilseed rape root environment for use in the biological control of Verticillium dahliae, Kleb was investigated in both controlled and non‐sterile growth conditions. Bacterial strains dominated by the red‐pigmented members of enterobacteriaceae were isolated from thoroughly washed and air‐dried root segments of symptomless young rape plants. Other associated strains found either belonged to Alcaligenes sp., Stenotrophomonas spp. and Pseudomonas spp. (Pseudomonas acidovorans and Pseudomonas putida) or were unidentified according to fatty acid methyl ester profile analysis. A total of 19 strains isolated in this study together with two previously studied strains, Serratia proteamaculans and Pseudomonas chlororaphis, were characterized on the basis of their interactions with V. dahliae and a number of functional characteristics. In line with earlier observations with root‐colonizing fungi also from oilseed rape, all bacterial strains suppressed the pathogen not only directly and but also indirectly in in vitro assays. Mechanisms of suppression were apparently multifold among the strains, but production of hydrogen cyanide does not seem to be involved in indirect inhibition. The majority of the strains possessed the ability to produce cellulases, proteases and phosphatases and some even produced chitinases and induced hypersensitive responses, indicating their potential for nutrient acquisition as well as colonization capacity and active recognition by the plant cells. Investigations in non‐sterile field soil revealed that some strains protected rape plants from V. dahliae partly by delaying symptom development. None of the strains, however, was strongly deleterious to rape growth either in the presence or absence of the pathogen. Light microscopic observations of roots and results based on agar printing techniques revealed the potential of the studied strains to colonize or interfere with the pathogen colonization. This study provides some insight into the evolved relationship of bacterial residents with their host in terms of their potential importance in its fitness.  相似文献   

6.
AIMS: A screening approach was developed to assess the potential of rhizobacterial strains to control Verticillium wilt caused by Verticillium dahliae Kleb. METHODS AND RESULTS: Sixty randomly chosen antagonistic bacterial strains originally isolated from rhizosphere of three different host plants of V. dahliae--strawberry, potato and oilseed rape--were evaluated for biocontrol and plant growth promotion by analysing in vitro antagonism towards V. dahliae and other plant pathogenic fungi, production of fungal cell wall-degrading enzymes and plant growth-promoting effects on strawberry seedlings. To test the plant growth-promoting effect, a microplate assay with strawberry seedlings was developed. Although the rhizobacterial strains were isolated from different plants they showed effects on the growth of strawberry seedlings. According to the in vitro biocontrol and plant growth-promoting activity, the three best candidates Pseudomonas putida B E2 (strawberry rhizosphere), Ps. chlororaphis K15 (potato rhizosphere) and Serratia plymuthica R12 (oilseed rape rhizosphere) were selected for greenhouse experiments to verify the in vitro screening results. Under greenhouse conditions the isolates selected according to this strategy were as effective, or more effective than commercial biocontrol agents and may therefore possibly be valuable as antagonists of V. dahliae. CONCLUSIONS: In this study, the screening strategy resulted in a selection of three interesting biocontrol candidates against Verticillium: Ps. putida B E2 (strawberry rhizosphere), Ps. chlororaphis K15 (potato rhizosphere) and Ser. plymuthica R12 (oilseed rape rhizosphere). SIGNIFICANCE AND IMPACT OF THE STUDY: A new combination of in vitro screening methods including a microplate assay with strawberry seedlings to test the plant growth promoting effect which allow to more efficiently select potential biological control agents was developed successfully.  相似文献   

7.
Six cultivars and breeding lines of potato (Solanum tuberosum) differing in susceptibility to verticillium wilt caused by Verticillium dahliae were studied with respect to quantitative and qualitative differences in the bacterial flora of their soil and rhizosphere-rhizoplane. Although, no association was observed between the types of bacteria that inhabited the soil or roots of wilt resistant and susceptible cultivars, quantitative differences were evident. These differences provide the first direct evidence that potato genotypes can influence bacterial populations. Bacterial populations were 9–25-fold higher on roots than in the adjacent soil. As the plants aged, the total number of rootcolonizing bacteria increased between 15 and 245%. Pseudomonas spp. were the most abundant microbes in the soil and rhizosphere-rhizoplane. The bacteria antagonistic to V. dahliae in vitro were identified as members of the genera Bacillus, Pseudomonas, Flavobacterium, and Gluconobacter. A statistically significant trend was evident toward the association of antagonistic bacteria with the more resistant potato cultivars.  相似文献   

8.
Several bacterial and fungal strains have been evaluated as biocontrol agents (BCAs) against Verticillium dahliae. In these studies, the BCAs were applied as a root drenching inoculum; however, this application method may have an adverse effect on the native, beneficial for the plants, microbial community. In the present study, it was evaluated whether endophytic application by stem injecting a conidial suspension of the non pathogenic Fusarium oxysporum F2 strain, isolated from a V. dahliae suppressive compost amendment, could reduce significantly Verticillium wilt symptom development in eggplants. It was revealed that stem injection of F2 seven days before transplanting the seedlings to soil infested by V. dahliae microsclerotia resulted in reduced disease severity compared to the control treatment. To visualise F2 ramification into the plant vascular system eggplant stems were injected with an EGFP transformed F2 strain. It was shown that F2 colonises effectively the plant vascular tissues over a long period of time as it was assessed by F2 DNA levels. In parallel, qPCR analysis showed that the application of F2 reduced significantly the amount of V. dahliae DNA in the stem tissues compared to the control treatment.  相似文献   

9.
The vascular wilt fungus Verticillium dahliae produces persistent resting structures, known as microsclerotia, which are important for this plant pathogen's long-term survival. Previously, we identified a hydrophobin gene (VDH1) that is necessary for microsclerotial production. The current study of VDH1's expression, and its regulation, was undertaken to provide insight into the largely uncharacterized molecular mechanisms relevant to microsclerotial development. Reporter gene analysis showed that VDH1 is specifically expressed in developing microsclerotia, as well as in hyphal fusions and conidiophores, suggesting that VDH1 mediates the development of microsclerotia from conidiophores and other hyphal structures. We report also on the effects of nutrient availability on the regulation of microsclerotial development in V. dahliae; the gene's activity appears to be regulated in response to carbon availability. Lastly, constitutive expression of VDH1 results in delayed disease symptom development, but has no noticeable effect on in vitro microsclerotial development.  相似文献   

10.
Microsclerotium formation by six isolates of Verticillium dahliae was studied at different temperatures both in vitro and in Arabidopsis thaliana . In vitro mycelial growth was optimal at 25°C, but microsclerotium formation was greatest at 20°C (two isolates) or 15–20°C (one isolate). Seedlings of A. thaliana were root-dipped in a conidial suspension, planted, and either placed at 5, 10, 15, or 25°C, or left at 20°C until the onset of senescence, after which some of the plants were placed at 5, 10, 15, or 25°C. The amount of microsclerotia per unit of shoot weight was assessed in relation to isolate and temperature. The optimal temperature for production of microsclerotia was 15–25°C. Two isolates each produced about 10 times more microsclerotia than each of the other four isolates. For these isolates, high R 2adj.-values of 0.77 and 0.66 were obtained, with temperature and its square as highly significant (P   < 0.001) independent variables. R 2adj.-values for the other isolates varied between 0.28 and 0.39. Moving plants to different temperatures at the onset of senescence led to microsclerotial densities that were intermediate between densities on plants that had grown at constantly 20°C and plants grown at other temperatures. This suggests that vascular colonization rate and rate of microsclerotium formation are similarly affected by temperature. The senescence rate of plants appeared unimportant except for plants grown at 25°C, which showed the highest amounts of microsclerotia per unit of plant weight in the most rapidly senescing plants.  相似文献   

11.
大丽轮枝孢微菌核的形成条件   总被引:3,自引:0,他引:3  
以棉花黄萎病菌Verticillium dahliae XJ2008菌株为试材,研究了培养基类型、pH值、温度等因素对棉花黄萎病菌微菌核形成的影响,确立了微菌核形成的最佳培养条件,并对采自新疆、江苏、河南、陕西、山东等地的15个棉花黄萎病菌菌株进行了测试。结果表明,适合于棉花黄萎病菌微菌核大量产生的培养基为基础改良培养基(BMM)、pH值为9.5-11.5、温度为20℃。在该条件下,15个大丽轮枝孢菌株在接种后第12天即可产生大量的微菌核,不同菌株产生微菌核的数量及大小间存在着显著差异,但均与病菌的致病性  相似文献   

12.
To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere.  相似文献   

13.
AIMS: Five bacterial strains belonging to Bacillus subtilis, Pseudomonas fluorescens and Ps. corrugata and two fungal strains belonging to Trichoderma viride and Gliocladium virens were evaluated for their efficacy in controlling sugar beet and cucumber damping-off caused by Pythium ultimum. METHODS AND RESULTS: The in vitro antagonistic activity of bacteria against various Pythium spp. was evaluated with dual cultures in various media. Pseudomonas strains inhibited the pathogen better than Bacillus strains. To identify potentially useful antagonist combinations, dual compatibility of antagonists was also evaluated, based on growth in two liquid media containing substrate previously used by other antagonists. Four pairs of bacteria were selected. Sugar beet damping-off biocontrol was attempted with bacterial seed treatments (individually and in pairs). Cucumber damping-off biocontrol was attempted with bacterial seed treatments and bacterial and fungal compost treatments. In sugar beet, satisfactory biocontrol was only achieved with Pseudomonas antagonists. Antagonist combinations did not show any superior biocontrol ability to individual antagonists and compatibility of bacteria in vitro did not correlate with compatibility in vivo. Bacterial seed treatments and fungal compost treatments failed to control cucumber damping-off. Better biocontrol in cucumber was achieved when bacterial antagonists were applied by drenching or by coating seed with bacteria in a peat carrier. CONCLUSIONS: Pseudomonas antagonists were superior to Bacillus antagonists in controlling damping-off in cucumber and sugar beet. Pseudomonas peat inocula maintained a good shelf-life 2 years after preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas peat formulations have the potential for development into commercial biopesticides.  相似文献   

14.
The use of indigenous bacterial root endophytes with biocontrol activity against soil-borne phytopathogens is an environmentally-friendly and ecologically-efficient action within an integrated disease management framework. The earliest steps of olive root colonization by Pseudomonas fluorescens PICF7 and Pseudomonas putida PICP2, effective biocontrol agents (BCAs) against Verticillium wilt of olive (Olea europaea L.) caused by the fungus Verticillium dahliae Kleb., are here described. A gnotobiotic study system using in vitro propagated olive plants, differential fluorescent-protein tagging of bacteria, and confocal laser scanning microscopy analysis have been successfully used to examine olive roots–Pseudomonas spp. interactions at the single-cell level. In vivo simultaneous visualization of PICF7 and PICP2 cells on/in root tissues enabled to discard competition between the two bacterial strains during root colonization. Results demonstrated that both BCAs are able to endophytically colonized olive root tissues. Moreover, results suggest a pivotal role of root hairs in root colonization by both biocontrol Pseudomonas spp. However, colonization of root hairs appeared to be a highly specific event, and only a very low number of root hairs were effectively colonized by introduced bacteria. Strains PICF7 and PICP2 can simultaneously colonize the same root hair, demonstrating that early colonization of a given root hair by one strain did not hinder subsequent attachment and penetration by the other. Since many environmental factors can affect the number, anatomy, development, and physiology of root hairs, colonization competence and biocontrol effectiveness of BCAs may be greatly influenced by root hair’s fitness. Finally, the in vitro study system here reported has shown to be a suitable tool to investigate colonization processes of woody plant roots by microorganisms with biocontrol potential.  相似文献   

15.
Bacterial Antagonists to Verticillium dahliae Kleb.   总被引:7,自引:0,他引:7  
Bacteria were isolated from the rhizosphere of Verticillium dahliae hosts and from environments. A total of 1394 bacterial isolates were screened for their ability to inhibit in vitro the growth of the phytopathogenic fungi V. dahliae ; 15% (203 of the isolates) showed antifungal effects. Seventeen isolates were selected and determined for further investigations, seven different species were identified. Several of the bacterial species listed, e.g. Erwinia herbicola, Pseudomonas chlororaphis, Pseudomonas paucimobilis and Xanthomonas maltophilia have not been reported previously as bacterial antagonists of V. dahliae. Bacillus subtilis, Pseudomonas fluorescens and Xanthomonas maltophilia are strong antagonists. We proved that lytic enzymes and siderophores are involved in the inhibition of growth. Ultrastructural and morphological changes were induced in Verticillium dahliae by the antagonistic bacteria.  相似文献   

16.
In order to build integrated strains with superior growth-promoting and disease-suppression effects, the biological control efficacy of Fo47 solid agents combined with actinomycetes strains toward Fusarium oxysporum and Verticillium dahliae were investigated in experiments on watermelon, cotton and eggplant. Five actinomycetes strains were prepared by solid fermentation. The count of viable solid agents, initially with propagules at 107–1011 CFU/g, slowly decreased after being stored one year at room temperature. After being inoculated into sterile soil for 50 days, the viable count of strain Fo47 remained at a stable level. The suppressive effects of Fo47 combined with strain QLP12 on Fusarium wilt on watermelon and cotton, and Verticillium wilt on eggplant, reaching 58.47%, 50.73% and 58.82%, respectively. This was significantly better than the single strain Fo47 alone, and growth of these treated plants and the colonisation rate of Fo47 were increased substantially as well. These results indicate that solid integrated agents with a high viability count and superior stability in soil could increase disease suppression and promote plant growth by synergy with different strains. The increased suppression obtained by Fo47 combined with actinomycete strains was not due to a simple addition of different mechanisms of biocontrol agents. By being intelligently integrated, these combinations increase disease suppression and provide the best biocontrol effect.  相似文献   

17.
In the Mediterranean basin, Verticillium Wilt of Olive (VWO) is diffused throughout its range of cultivation, causing severe yield losses and tree mortality. The disease was reported in almost all the Mediterranean and Middle East countries, and in Lebanon it is of increasing significance also on many valuable crops. The disease has already been reported on potato, peach and almond in the Bekaa valley; however, to date no information is available about the incidence of VWO and the inoculum density of Verticillium dahliae microsclerotia in soil of the main agricultural areas of Lebanon. Results from the present investigations demonstrate a high V. dahliae frequency in soils (75.3%), coupled with a mean soil inoculum density of 17.0 MS g?1, clearly indicating a great impact on the production of susceptible hosts in Lebanon, mainly in Bekaa region. Molecular method to assess the microsclerotia inoculum density in soil allowed the detection of a higher frequency of infested soils, as compared with the traditional plating, thus confirming its higher sensitivity. The overall Verticillium wilt prevalence in the inspected olive orchards was 46.2%, and the frequency of V. dahliae‐infected trees was 25.7%. The widespread presence of V. dahliae in all olive growing areas of Lebanon enforces the adoption of measures aimed at reducing the soil inoculum density before any new olive plantation, and the use of strong phytosanitary regulations to improve the certification schemes of propagating material.  相似文献   

18.
Verticillium wilt of olive, caused by Verticillium dahliae Kleb., is the most severe disease affecting this crop in most olive growing countries. In this study, the presence of viable structures of V. dahliae in dried inflorescences from wilted olive shoots was investigated. The pathogen was found inside peduncles and flowers, by assessing the number of typical star‐shaped microsclerotial colonies formed onto the modified sodium polypectate agar medium. Microsclerotia of V. dahliae were observed inside the peduncles under the stereoscopic microscope. The presence of microsclerotia in these easily decomposable olive tissues shows that infected inflorescences can act as a source of inoculum for Verticillium wilt epidemics.  相似文献   

19.
In Spain, Verticillium wilt, caused by Verticillium dahliae, is the most important disease of cotton and olive. Isolates of V. dahliae infecting these crops can be classified into highly virulent, defoliating (D), and mildly virulent, nondefoliating (ND), pathotypes. Infested soil is the primary source of inoculum for Verticillium wilt epidemics in cotton and olive, and severity of disease relates to the prevailing V.dahliae pathotype. In this work we have adapted the use of previously developed primer pairs specific for D and ND V. dahliae for the detection of these pathotypes by nested PCR in artificial and natural soils. Success in the detection procedure depends upon efficiency in extracting PCR-quality DNA from soil samples. We developed an efficient DNA extraction method from microsclerotia infesting the soil that includes the use of acid washed sand during the grinding process and skimmed milk to avoid co-purification of Taq-polymerase inhibitors with DNA. The specific nested-PCR procedure effectively detected 10 or more microsclerotia per gram of soil. The detection procedure has proven efficient when used with a naturally infested soil, thus demonstrating usefullness of the diagnostic method for rapid and accurate assessment of soil contamination by V. dahliae pathotypes.  相似文献   

20.
AIMS: To examine the in vitro influence of various bacteria species on Helicobacter pylori (Hp) growth. METHODS AND RESULTS: The effects of 29 micro-organisms on 31 Hp strains were determined using two modified 'cross streak' methods. Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Morganella morganii, Serratia marcescens, Bacteroides fragilis, Fusobacterium nucleatum and Clostridium difficile showed the strongest inhibition. The inhibitory effects varied, depending on the bacteria spp. and Hp strains, and were method dependent. The cagA status of Hp strains did not correlate with the extent of inhibition. CONCLUSIONS: Helicobacter pylori is inhibited by a significant number of commensal bacteria species as well as opportunistic human pathogens. The success and progress of Hp infection may be influenced by the bacterial flora present, while the difficulty in cultivating Hp from the oral mucosa and faeces may be the result of antagonistic bacterial interaction. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides valuable data on the sensitivity of Hp to a variety of intestinal and oral commensals as well as opportunistic human pathogens. Hp's varying pathogenicity and the specific localization of infection may be the result of these sensitivities. These results can also serve as a basis for further studies to identify the inhibitory substances and make them available for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号