首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition and structure of the complex oligosaccharides of thyrotropin (TSH) and free alpha-subunits are not well established, but are believed to be important determinants of the biological properties of these glycoproteins. We employed a simple double-label technique to learn the relative fucose content of mouse thyrotropin and free alpha-subunits. Thyrotropic tumor minces were incubated simultaneously with [35S]methionine and [3H]fucose. Thyrotropin and free alpha-subunits were labeled with both isotopes, and the ratio of 3H/35S was higher in free alpha-subunits than in thyrotropin; free alpha-subunits were approximately fivefold richer in fucose than was thyrotropin. The 3H/35S ratio was not substantially altered in TSH or free alpha-subunits secreted after a brief incubation with 10(-7) M thyrotropin-releasing hormone. Species which incorporated [3H]fucose were resistant to endoglycosidase H. Thus, mouse free alpha-subunits secreted by thyrotropic tumor are relatively rich in fucose. Double-isotope labeling using an amino acid and a sugar appears to be a useful technique for studies of the glycoprotein hormones.  相似文献   

2.
The accessibility of the asparagine-linked carbohydrate chains of human thyrotropin (hTSH) and free alpha and beta subunits was investigated by their susceptibility to endoglycosidases H and F as well as to peptide:N-glycosidase F. Iodinated hTSH or subunits were incubated with a commercial enzyme preparation containing both endoglycosidase F and N-glycosidase F activities and further analyzed by sodium dodecyl sulfate gel electrophoresis followed by quantitative autoradiography. We show that, working at the optimum of the N-glycosidase activity, the relative amount of endoglycosidase required for half-deglycosylation was 20-fold higher for native hTSH than for the reduced and dissociated subunits. Under nondenaturing conditions, the 18K beta subunit of hTSH could be readily deglycosylated to a 14K species while the 22K alpha subunit was largely resistant. However, both subunits were converted to an apoprotein of similar apparent molecular weight of 14K following reduction of disulfide bonds. In contrast, the free alpha subunit of human choriogonadotropin appeared fully sensitive to carbohydrate removal under nonreducing conditions despite the presence of a partially deglycosylated 18K intermediate at low concentration of endoglycosidase. Similarly, both hTSH-alpha and hTSH-beta could be completely deglycosylated after acid dissociation of the native hormone. While all three carbohydrate chains of hTSH are sensitive to pure peptide:N-glycosidase F, only one on alpha and the single oligosaccharide present on beta in hTSH appeared to be cleaved by pure endoglycosidase F. Interestingly, one of the two carbohydrate chains present on alpha was also found to be susceptible to endoglycosidase H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have studied the effects of brefeldin A (BFA) and monensin on the processing of the oligosaccharides of thyrotropin (TSH), free alpha-subunits, and cellular glycoproteins of mouse pituitary tissue to clarify the subcellular sites of action of BFA. BFA was previously shown to inhibit the translocation of glycoproteins from the rough endoplasmic reticulum to the Golgi apparatus but action at other sites was possible. Pituitaries from hypothyroid mice were incubated with [35S]methionine, [3H]mannose, [3H]galactose, [3H]fucose, N-[3H]acetylmannosamine, or [35S]sulfate for 2 hr in the absence or presence of 5 micrograms of BFA/ml or 2 microM monensin. TSH and free alpha-subunits were immunoprecipitated from tissue lysates and analyzed by sodium dodecyl sulfate-gel electrophoresis. The tryptic glycopeptides of TSH were separated using high-performance liquid chromatography. Total glycoproteins in cell lysates were precipitated using trichloroacetic acid. Labeled oligosaccharides were released from the tryptic glycopeptides of TSH and cellular glycoproteins by endoglycosidase H and they were analyzed by paper chromatography. Compared with control incubations, BFA caused the intracellular accumulation of glycoproteins having less than expected amounts of Man9GlcNAc2 units, but with excess Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. There was a lesser accumulation of glucose-containing oligosaccharides, especially Glc1Man9GlcNAc2. Monensin also caused the accumulation of certain high mannose species, but the pattern differed from that seen for BFA, since Man9GlcNAc2 units were preserved and there was less excess of Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. BFA did not block the initial attachment of oligosaccharides at any of the three Asn-glycosylation sites of TSH, but caused the accumulation of Man5-8GlcNAc2 units at each site. Both monensin and BFA inhibited fucosylation, sulfation, and sialylation more markedly than mannose incorporation. Thus, in addition to its previously described action of inhibiting rough endoplasmic reticulum to Golgi transport, BFA appears to partially inhibit the glucose-trimming enzymes as well as some Golgi enzymes.  相似文献   

4.
The site-specific glycosylation patterns of two H-2K alleles, k and b, were determined on splenic T cells metabolically labeled with [3H]mannose. Cells from B10, B10.A, (B10 X B10.A)F1, and C3H mice were examined, along with the effect of short- (8 hr) and long-term (36 hr) mitogenic stimulation. For both glycosylation sites (Asn86 and Asn176) of both antigens, 80% of the structures consisted of mono- and bisialylated biantennary N-linked complex oligosaccharides, with the remaining consisting of smaller (probably high mannose) structures. Asn176 of both H-2Kk and H-2Kb contained the same ratio (2.8 to 1) of bi- to monosialylated chains. However, Asn86 of H-2Kb contained a higher ratio (5 to 1), while Asn86 of H-2Kk a lower ratio (1.5 to 1). This difference was seen on antigens isolated from cells of the parental strains as well as from the F1 cross. The glycosylation of H-2Kk did not vary between B10.A and C3H mice. Mitogenic stimulation increased markedly both total [3H]mannose incorporation and the spectrum of N-linked oligosaccharides labeled. For H-2Kk, it had no effect on sialylation, but resulted in a slight under galactosylation of the monosialylated structures at both sites. A comparison of the patterns seen here, determined on nontransformed T cells, with those previously determined on H-2Kk from a B lymphoma line, revealed marked differences in sialylation and branching patterns at both sites. These data indicate that glycosylation differences may be found between highly homologous (91%) alleles of an H-2 gene, even when co-dominantly expressed by F1 cells; however, the patterns do change with mitogenic stimulation, and between normal and transformed cells.  相似文献   

5.
alpha-Mannosidase from Dictyostelium discoideum is a heterogenous glycoprotein which is derived from a precursor as a result of proteolytic processing. Its oligosaccharides are phosphorylated and sulfated. We investigated the sulfation of the enzyme by means of pulse-chase labeling and specific immunoprecipitation followed by endoglycosidase H treatment and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The earliest detectable form of the precursor was shown to be glycosylated and sensitive to endoglycosidase H. With time some of its oligosaccharides were sulfated and became partially resistant to endoglycosidase H. In the same time period, the precursor was proteolytically cleaved, yielding four species with different molecular masses (46-58 X 10(3) daltons). When first generated each of these was sensitive to endoglycosidase H but with time the 54,000- and 58,000-dalton forms developed degrees of endoglycosidase H resistance. The fully mature cleaved forms all contained sulfate. Sulfate from pulse-labeled precursor could only be detected in two of the forms implying that sulfation of the others occurs either after precursor cleavage or before cleavage but subsequent to the pulse period. When secretion of precursor was triggered by starvation only the endoglycosidase H-resistant forms were secreted.  相似文献   

6.
Atrial natriuretic peptide (ANP) is a hormone involved in cardiovascular homeostasis through its natriuretic and vasodilator actions. The ANP receptor that mediates these actions is a glycosylated transmembrane protein coupled to guanylate cyclase. The role of glycosylation in receptor signaling remains unresolved. In this study, we determined, by a combination of HPLC/MS and Edman sequencing, the glycosylation sites in the extracellular domain of ANP receptor (NPR-ECD) from rat expressed in COS-1 cells. HPLC/MS analysis of a tryptic digest of NPR-ECD identified five glycosylated peptide fragments, which were then sequenced by Edman degradation to determine the glycosylation sites. The data revealed Asn-linked glycosylation at five of six potential sites. The type of oligosaccharide structure attached at each site was deduced from the observed masses of the glycosylated peptides as follows: Asn13 (high-mannose), Asn180 (complex), Asn306 (complex), Asn347 (complex), and Asn395 (high-mannose and hybrid types). Glycosylation at Asn180 and Asn347 was partial. The role of glycosyl moieties in ANP binding was examined by enzymatic deglycosylation of NPR-ECD followed by binding assay. NPR-ECD deglycosylated with endoglycosidase F2 and endoglycosidase H retained ANP-binding activity and showed an affinity for ANP similar to that of untreated NPR-ECD. Endoglycosidase treatment of the full-length ANP receptor expressed in COS-1 cells also had no detectable effect on ANP binding. These results suggest that, although glycosylation may be required for folding and transport of the newly synthesized ANP receptor to the cell surface, the oligosaccharide moieties themselves are not involved in hormone binding.  相似文献   

7.
Site-specific N-glycan characterization of human complement factor H   总被引:1,自引:0,他引:1  
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein.  相似文献   

8.
The structures of the oligosaccharides of the hemagglutinin of fowl plague virus [influenza A/FPV/Rostock/34 (H7N1)] have been elucidated by one- and two-dimensional 1H n.m.r. spectroscopy at 500 MHz and by microscale methylation analysis. N-Glycosidic oligosaccharides of the oligomannosidic (OM) and of the N-acetyllactosaminic type have been found, the latter type comprising biantennary structures, without (A) or with (E) bisecting N-acetylglucosamine, and triantennary (C) structures. Analysis of the tryptic and thermolytic glycopeptides of the hemagglutinin allowed the allocation of these oligosaccharides to the individual glycosylation sites. Each attachment site contained a unique set of oligosaccharides. Asn12 contains predominantly structures C and E which are highly fucosylated. Asn28 contains OM and A structures that lack fucose and sulfate. Asn123 shows A that has incomplete antennae but is highly fucosylated and sulfated. Asn149 has fucosylated A and E. Asn231 shows fucosylated A and E with incomplete antennae. Asn406 has OM oligosaccharides. Asn478 has A and E with little fucose. Localization of the oligosaccharides on the three-dimensional structure of the hemagglutinin revealed that the oligomannosidic glycans are attached to glycosylation sites at which the enzymes responsible for carbohydrate processing do not have proper access. These observations demonstrate that an important structural determinant for the oligosaccharide side chains is the structure of the glycoprotein itself. In addition, evidence was obtained that the rate of glycoprotein synthesis also has an influence on carbohydrate structure.  相似文献   

9.
The glycosylated env gene precurosr (Pr80env) of Moloney murine leukemia virus has been isolated by selective immunoprecipitation. Use of the drug tunicamycin to inhibit nascent glycosylation or specific cleavage with endoglycosidase H demonstrated that the precursor contained an apoprotein with a molecular weight of 60,000. The finished virion glycoprotein (gp70) was largely resistant to the action of endoglycosidase H. Chromatography of the glycopeptides of Pr80env in conjunction with endoglycosidase H digestion studies suggested that the precursor contained two distinct major glycosylation sites. Analysis of partial proteolytic cleavage fragments of Pr80env before and after endoglycosidase H treatment placed the two glycosylation sites within a 30,000-dalton region of the apoprotein sequence. Kinetic experiments showed that carbohydrate processing as well as proteolytic cleavage are late steps in the maturation of Pr80env.  相似文献   

10.
Bone morphogenetic protein (BMP)-1 is a glycosylated metalloproteinase that is fundamental to the synthesis of a normal extracellular matrix because it cleaves type I procollagen, as well as other precursor proteins. Sequence analysis suggests that BMP-1 has six potential N-linked glycosylation sites (i.e. NXS/T) namely: Asn(91) (prodomain), Asn(142) (metalloproteinase domain), Asn(332) and Asn(363) (CUB1 domain), Asn(599) (CUB3 domain), and Asn(726) in the C-terminal-specific domain. In this study we showed that all these sites are N-glycosylated with complex-type oligosaccharides containing sialic acid, except Asn(726) presumably because proline occurs immediately C-terminal of threonine in the consensus sequence. Recombinant BMP-1 molecules lacking all glycosylation sites or the three CUB-specific sites were not secreted. BMP-1 lacking CUB glycosylation was translocated to the proteasome for degradation. BMP-1 molecules lacking individual glycosylation sites were efficiently secreted and exhibited full procollagen C-proteinase activity, but N332Q and N599Q exhibited a slower rate of cleavage. BMP-1 molecules lacking any one of the CUB-specific glycosylation sites were sensitive to thermal denaturation. The study showed that the glycosylation sites in the CUB domains of BMP-1 are important for secretion and stability of the molecule.  相似文献   

11.
Brain membrane preparations of different vertebrates were photoaffinity labeled with [3H]flunitrazepam and subsequently deglycosylated with endoglycosidase F and peptide N-glycopeptidase. SDS-polyacrylamide gel electrophoresis followed by fluorography revealed that each benzodiazepine-binding protein is deglycosylated in two steps, indicating that each protein has two glycosylation sites. Species variation of the apparent molecular masses of the benzodiazepine-binding proteins and regional heterogeneity in avians persist after deglycosylation. These results indicate that the alpha-subunit(s) of the GABA/benzodiazepine receptor has undergone electrophoretically detectable changes in its amino acid composition during vertebrate evolution. The existence of at least two different alpha-subunits in avians is further substantiated.  相似文献   

12.
The beta 2-adrenergic receptor (beta-AR) is an integral membrane glycoprotein of apparent Mr approximately equal to 64,000. The amino acid sequence deduced from the beta-AR gene reveals homology with the visual pigment rhodopsin of retinal rod outer segments. We have proposed a structural model of beta-AR which is similar to that elucidated for rhodopsin. In this paper we identify a number of structural and topographical characteristics of beta-AR consistent with the model through the use of limited proteolysis. Limited trypsinization of beta-AR reconstituted in lipid vesicles yields two insoluble (integral membrane) domains of Mr approximately equal to 38,000 and 26,000. Identical results were obtained in intact cells, indicating that the cleavage site of the receptor is accessible at the extracellular surface of the plasma membrane. The amino-terminal domain (38 kDa) contains the ligand binding site (as revealed by photoaffinity labeling) and the sites of glycosylation (as revealed by its sensitivity to endoglycosidase F), whereas the carboxyl-terminal domain (26 kDa) contains all the sites of in vitro phosphorylation by cAMP-dependent protein kinase and the beta-adrenergic receptor kinase. Of four canonical sites for N-linked glycosylation, two near the amino and two near the carboxyl terminus, only those in the amino-terminal domain (Asn6 and Asn15) are utilized and sensitive to endoglycosidase F. Carboxypeptidase Y treatment of reconstituted native beta-adrenergic receptor generates a truncated (approximately 57 kDa) glycopeptide that has lost most of the sites phosphorylated by beta-AR kinase and one of the sites phosphorylated by protein kinase A. The various features delineated, including the length of the carboxypeptidase Y-sensitive region, the extracellular location of the trypsin-sensitive site, the location of the sites of phosphorylation and glycosylation all constrain the receptor to a rhodopsin-like structure with multiple membrane spanning segments.  相似文献   

13.
Cytochrome b558, an essential component of the respiratory burst of phagocytic cells, is the terminal electron donor to molecular oxygen that results in the formation of superoxide anion (O2-.). It is an integral membrane heterodimer that in neutrophils consists of a 22-kDa small subunit and a highly glycosylated 91-kDa large subunit. Identical core proteins often differ in glycosylation in different cell types and with some membrane glycoproteins, the glycosylation state may markedly affect function. In the present study, antisera reactive with cytochrome b558 large subunit was used for immunoblot analysis of the glycosylation pattern of this subunit from different types of phagocytic cells. Striking variability in the apparent m.w. of this broadly banding subunit was detected in five different phagocytic cell types (neutrophils 78,000 to 93,000; eosinophils 74,000 to 115,000; monocytes 82,000 to 99,000; dibutyryl cyclic AMP-induced HL-60 cells 79,000 to 103,000; dimethyl sulfoxide-induced HL-60 cells 77,000 to 110,000). However, after complete cleavage of N-linked oligosaccharides with endoglycosidase F, the core peptide of cytochrome b558 large subunit from these different cell types had the same Mr (58,000). Inhibition of N-glycosylation with tunicamycin in differentiating HL-60 cells resulted in the synthesis of immunoreactive protein of the same m.w. and banding pattern as seen after endoglycosidase F cleavage. These tunicamycin treated cells retained some capacity to generate superoxide anion when stimulated with PMA. We conclude that the identity of the N-linked oligosaccharides of the cytochrome b558 large subunit differ in various phagocytic cells. All N-linked glycans on cytochrome b558 in all cell types examined were of the complex type as defined by resistance to endoglycosidase H cleavage. N-linked glycosylation of the cytochrome b558 large subunit may not be essential for activation of the respiratory burst.  相似文献   

14.
Mouse myeloma immunoglobulin IgM heavy chains were cleaved with cyanogen bromide into nine peptide fragments, four of which contain asparagine-linked glycosylation. Three glycopeptides contain a single site, including Asn 171, 402, and 563 in the intact heavy chain. Another glycopeptide contains two sites at Asn 332 and 364. The carbohydrate containing fragments were treated with Pronase and fractionated by elution through Bio-Gel P-6. The major glycopeptides from each site were analyzed by 500 MHz 1H-NMR and the carbohydrate compositions determined by gas-liquid chromatography. The oligosaccharide located at Asn 171 is a biantennary complex and is highly sialylated. The amount of sialic acid varies, and some oligosaccharides contain alpha 1,3-galactose linked to the terminal beta 1,4-galactose. The oligosaccharides at Asn 332, Asn 364, an Asn 402 are all triantennary and are nearly completely sialylated on two branches and partially sialylated on the triantennary branch linked beta 1,4 to the core mannose. The latter is sialylated about 40% of the time for all three glycosylation sites. The major oligosaccharide located at Asn 563 is of the high mannose type. The 1H-NMR determination of structures at Asn 563 suggests that the high mannose oligosaccharide contains only three mannose residues.  相似文献   

15.
Shi X  Elliott RM 《Journal of virology》2004,78(10):5414-5422
The membrane glycoproteins Gn and Gc of Hantaan virus (HTNV) (family Bunyaviridae) are modified by N-linked glycosylation. The glycoproteins contain six potential sites for the attachment of N-linked oligosaccharides, five sites on Gn and one on Gc. The properties of the N-linked oligosaccharide chains were analyzed by treatment with endoglycosidase H, peptide:N-glycosidase F, tunicamycin, and deoxynojirimycin and were confirmed to be completely of the high-mannose type. Ten glycoprotein gene mutants were constructed by site-directed mutagenesis, including six single N glycosylation site mutants and four double-site mutants. We determined that four sites (N134, -235, -347, and -399) on Gn and the only site (N928) on Gc in their ectodomains are utilized, whereas the fifth site on Gn (N609), which faces the cytoplasm, is not glycosylated. The importance of individual N-oligosaccharide chains varied with respect to folding and intracellular transport. The oligosaccharide chain on residue N134 was found to be crucial for protein folding, whereas single mutations at the other glycosylation sites were better tolerated. Mutation at glycosylation sites N235 and N399 together resulted in Gn misfolding. The endoplasmic reticulum chaperones calnexin and calreticulin were found to be involved in HTNV glycoprotein folding. Our data demonstrate that N-linked glycosylation of HTNV glycoproteins plays important and differential roles in protein folding and intracellular trafficking.  相似文献   

16.
The glycosylation and subsequent phosphorylation of mannose residues is a pivotal modification during the biosynthesis of lysosomal enzymes. We have identified the sites of N-linked glycosylation and oligosaccharide phosphorylation on the alpha-subunit of beta-hexosaminidase and have determined the influence of the oligosaccharides on the folding and transport of the enzyme. The potential glycosylation sequences, either singly or in combination, were eliminated through site-directed mutagenesis of the cDNA. By expression of the mutant cDNAs in COS-1 cells, each of the three glycosylation sites on the alpha-subunit was found to be modified by an oligosaccharide. One of the three oligosaccharides was the preferred site of phosphorylation. The absence of any individual oligosaccharide did not diminish the expression of the catalytic activity associated with the alpha-chain, implying proper folding and assembly of subunits. A profound effect was observed, however, when all three oligosaccharides were absent. The unglycosylated alpha-subunit, resulting from genetic alteration of all three glycosylation sites or synthesis of the wild-type protein in the presence of tunicamycin, was catalytically inactive. It was found to be improperly folded into an insoluble aggregate, linked through inappropriate disulfide bonds. The unglycosylated protein was trapped in the lumen of the endoplasmic reticulum and was found in a complex with the Ig heavy chain-binding protein, BiP. The properties of the nonglycosylated, misfolded alpha-subunit were similar to some mutant alpha-subunits in Tay-Sachs disease patients. The results indicate that the oligosaccharides are essential, although not in a site-specific manner, for proper folding and cellular transport of the alpha-subunit.  相似文献   

17.
Recombinant human tissue plasminogen activator (rt-PA), produced by expression in Chinese hamster ovary cells, is a fibrin-specific plasminogen activator which has been approved for clinical use in the treatment of myocardial infarction. In this study, the structures of the Asn-linked oligosaccharides of Chinese hamster ovary-expressed rt-PA have been elucidated. High mannose and hybrid oligosaccharides were released from the protein by endoglycosidase H digestion, whereas N-acetyllactosamine-type ("complex") oligosaccharides were released by peptide:N-glycosidase F digestion. The oligosaccharides were fractionated by gel permeation chromatography and anion exchange high performance liquid chromatography (HPLC), and their structures were analyzed by composition and methylation analysis, high pH anion exchange chromatography, fast atom bombardment-mass spectrometry (FAB-MS), and 500-MHz 1H NMR spectroscopy. High mannose oligosaccharides were found to account for 38% of the total carbohydrate content of rt-PA and consisted of Man5GlcNAc2, Man6GlcNAc2, and Man7GlcNAc2 in the ratio 1.8:1.7:1. Two hybrid oligosaccharides were identified and accounted for 3% of the carbohydrate of rt-PA. The N-acetyllactosamine-type oligosaccharides were found to comprise diantennary (34% of total carbohydrate), 2,4-branched triantennary (11%), 2,6-branched triantennary (9%), and tetraantennary (5%) structures. Sialylation of these oligosaccharides was by alpha (2----3) linkages to galactose. Most (greater than 90%) of the N-acetyllactosamine-type structures contained fucose alpha (1----6) linked to the Asn-linked N-acetylglucosamine residue. The distribution of oligosaccharide structures at individual glycosylation sites (Asn residues 117, 184, and 448) was also determined. rt-PA exists as two variants that differ by the presence (type I) or absence (type II) of carbohydrate at Asn-184. Tryptic glycopeptides were isolated by reversed phase high performance liquid chromatography and treated with peptide:N-glycosidase F. The oligosaccharides released from each glycosylation site were analyzed by high pH anion exchange chromatography. By this analysis, Asn-117 was demonstrated to carry exclusively high mannose oligosaccharides. When glycosylated, Asn-184 carried diantennary, 2,4-branched triantennary, 2,6-branched triantennary, and tetraantennary N- acetyllactosamine oligosaccharides in the ratio 9.0:4.5:1.4:1. Asn- 448 carried the same types of oligosaccharides, but in the ratio 7.5:1.6:2.1:1. The distributions of Asn-linked oligosaccharides at positions 117 and 448 were found not to be affected by the presence or absence of carbohydrate at position 184. The relevance of the  相似文献   

18.
The N-terminal fragment of human thyroglobulin (residues 1 to 171) contains the preferential hormonogenic site of the molecule and 2 potential sites of N-glycosylation (Asn57 and Asn91). This fragment was isolated from a human thyroglobulin purified from a single goiter. The tryptic peptides bearing the glycosylation sites were separated by Bio-Gel P-30 and HPLC columns. The oligosaccharides borne at each site were analyzed, after tritium labeling, by concanavalin A-Sepharose and HPLC. At both sites the structures observed are heterogenous, with a majority of biantennary complex type structures.  相似文献   

19.
The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In the accompanying paper (Green, E.D., and Baenziger, J.U. (1987) J. Biol. Chem. 262, 25-35), we elucidated the structures of the anionic asparagine-linked oligosaccharides found on the bovine, ovine, and human pituitary glycoprotein hormones. In this study, we determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear alpha-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by greater than 10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (alpha 2,3 versus alpha 2,6). In addition to differences in the proportion of sulfated and sialylated structures on LH and FSH, there were site-specific variations in the amount of mono- and disulfated oligosaccharides at different glycosylation sites on LH alpha-beta dimers. The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity.  相似文献   

20.
We studied the role of glycosylation in the expression of a functional human TSH receptor. Oligonucleotide-directed mutagenesis was used to replace, separately or together, the Asn codons with Gln in each of the six potential glycosylation sites in the receptor. Recombinant wild-type and mutated TSH receptors were stably expressed in Chinese hamster ovary cells. High affinity TSH binding and the cAMP response to TSH stimulation were abolished in the receptor mutated at Asn77 as well as in the receptor mutated at all six potential glycosylation sites. In the receptor mutated at Asn113, the affinity of TSH binding was markedly decreased (Kd, 2.6 x 10(-8) 3.3 x 10(-10) M in the wild-type receptor). This affinity was too low to permit the transduction of a signal, as measured by an increase in intracellular cAMP generation. Substitution of Asn at positions 99, 177, 198, and 302 did not appreciably affect the affinity of the TSH receptor for TSH binding or its ability to mediate an increase in intracellular cAMP levels. Therefore, either these four potential glycosylation sites are not glycolysated, or alternatively, oligosaccharide chains at these positions do not play a major role in the folding, intracellular trafficking, stability, or expression of a functional receptor on the cell surface. Conversely, our data suggest that N-linked glycosylation of Asn77 and Asn113 does play a role in the expression of a biologically active TSH receptor on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号