首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I have compared central nervous system (CNS) neurite outgrowth on glial and nonglial cells. Monolayers of glial cells (astrocytes and Schwann cells) or nonglial cells (e.g., fibroblasts) were prepared and were shown to be greater than 95% pure as judged by cell type-specific markers. These monolayers were then tested for their ability to support neurite outgrowth from various CNS explants. While CNS neurites grew vigorously on the glial cells, most showed little growth on nonglial cell monolayers. Neurites grew singly or in fine fascicles on the glial cells at rates greater than 0.5 mm/d. The neurite outgrowth on astrocytes was investigated in detail. Scanning and transmission electron microscopy showed that the neurites were closely apposed to the astrocyte surface and that the growth cones were well spread with long filopodia. There was no evidence of significant numbers of explant- derived cells migrating onto the monolayers. Two types of experiments indicated that factors associated with the astrocyte surface were primarily responsible for the vigorous neurite outgrowth seen on these cells: (a) Conditioned media from either astrocytes or fibroblasts had no effect on the pattern of outgrowth on fibroblasts and astrocytes, and conditioned media factors from either cell type did not promote neurite outgrowth when bound to polylysine-coated dishes. (b) When growing CNS neurites encountered a boundary between astrocytes and fibroblasts, they stayed on the astrocytes and did not encroach onto the fibroblasts. These experiments strongly suggest that molecules specific to the surfaces of astrocytes make these cells particularly attractive substrates for CNS neurite outgrowth, and they raise the possibility that similar molecules on embryonic glial cells may play a role in guiding axonal growth during normal CNS development.  相似文献   

2.
The neurotrophic activity of astrocytes and fibroblasts and its regulation by various cytokines were investigated. Astrocyte conditioned medium (ACM) enhanced the survival of neurons and the proliferation of astrocytes in embryonic cortical cultures grown in serum-free defined medium. However, these results were not affected by acidic fibroblast growth factor, interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF alpha), and transforming growth factor-beta 1. In contrast, ACM induced choline acetyltransferase expression in septal cholinergic neurons via nerve growth factor (NGF)-dependent and -independent mechanisms. However, neither acidic nor basic fibroblast growth factor is involved in this biological activity in ACM. The cytokines listed above mainly stimulate NGF-mediated cholinergic neurotrophic activity in ACM. A combination of IL-1 beta and TNF alpha significantly enhanced choline acetyltransferase activity in septal neurons co-cultured with astrocytes, and this effect was found to be mediated by NGF produced by activated astrocytes. Effects of astrocytes on GABAergic neurons were also examined. ACM was found to increase glutamate decarboxylase activity in neuronal cultures from septum in the presence of Ara-C. However, the cytokines did not enhance this activity in ACM. Moreover, a combination of IL-1 beta and TNF alpha had no effect on glutamate decarboxylase activity in septal neurons co-cultured with astrocytes. In a final set of experiments, cholinergic neurotrophic activity in skin-derived fibroblast conditioned medium (FCM) was examined. FCM was found to possess biological activity similar to that of ACM on septal neurons grown in serum-free defined medium with Ara-C. The cytokines also enhanced NGF-mediated cholinergic neurotrophic activity in FCM. Astrocytes and fibroblasts were found to possess NGF-type and non-NGF-type cholinergic neurotrophic activity, and various cytokines were found to regulate the NGF-type cholinergic neurotrophic activity in both types of cells. NGF produced by astrocytes and fibroblasts that are activated by cytokines is likely to be important for development and regeneration of NGF-sensitive neurons in the central and peripheral nervous systems.  相似文献   

3.
Erythropoietin (EPO), a hematopoietic factor, is also required for normal brain development, and its receptor is localized in brain. Our previous study showed that EPO promotes differentiation of neuronal stem cells into astrocytes. Since astrocytes have influence on the neuronal function, we investigated whether EPO-activated astrocytes could stimulate differentiation of neuronal stem cells into neurons. EPO did not promote neuronal differentiation of neuronal stem cells isolated from 17 day embryos, however, neuronal differentiation was promoted when the neuronal stem cells were co-cultured with astrocyte isolated from post neonatal (Day 1) rat brain. Moreover, neuronal differentiation was further promoted when the neuronal stem cells were cultured with astrocyte culture medium treated by EPO (10U/ml) showing increase of morphological differentiation, and expression of neuronal differentiation marker proteins, neurofilament, and tyrosine hydroxylase. The promoting effect of EPO-treated astrocyte medium was also found in the differentiation of PC12 cells. EPO-promoted morphological differentiation of neuronal stem cells as well as astrocytes was dose dependently reduced by treatment with anti-EPO receptor antibodies in culture with astrocyte culture medium. To clarify whether EPO itself or via production of well-known neurotropic factor could promote neuronal cell differentiation, we determined the level of neurotropic factors in the EPO-treated astrocytes. Compared to untreated astrocytes, EPO-treated astrocytes increased about 2-fold in beta-NGF and 3-4-fold in BMP2, but did not increase BNDF and NT-3 levels. Since the previous study showed that extracellular signal-regulated kinase (ERK) is involved in activation of astrocytes by EPO, we determined whether generation of neurotrophic factor may also be involved with the ERK pathway. In the presence of ERK inhibitor, PD98059, the generation of beta-NGF was diminished in a dose dependent manner consistent with the inhibiting effect on neuronal differentiation. These data demonstrate that EPO promotes neuronal cell differentiation through increased release of beta-NGF and BMP2 from astrocytes, and this effect may be associated with ERK pathway signals.  相似文献   

4.
In reactive gliosis, astrocytes undergo morphological and biochemical changes which can be mimicked in vitro by treatment with bFGF (basic fibroblast growth factor) or cAMP. To investigate the influence of activated cortical astrocytes on central nervous system (CNSD) neurons, we studied the effect of the supernatant from bFGF-treated astrocytes on the development of dopaminergic neurons from rat mesencephalon. Conditioned medium of untreated astrocytes stimulated dopamine uptake of mesencephalic cultures. After activation of astrocytes with bFGF this effect was greatly enhanced. It was significantly more potent than stimulating effects of other neurotrophic factors. The supernatant of these astrocytes increased the biochemical differentiation but not the survival of dopaminergic neurons in our cell culture system. Trypsin digestion and gel chromatography revealed that the activity was due to one or several proteins with molecular mass above 5 kDa. We excluded the participation of several factors known to be produced by astrocytes or that are neurotrophic for substantia nigra cultures. In particular, we provide evidence that bFGF, BDNF, NT-3, Il-1, Il-6, S100 beta and alpha 2-macroglobulin were not involved in the effect of the conditioned medium. In vitro stimulation of astrocytes therefore triggers the expression of currently uncharacterized factors which influence the biochemical differentiation of mesencephalic dopaminergic neurons, the cells that degenerate in Parkinson's disease.  相似文献   

5.
探讨大鼠巨细胞病毒(rat cytomegalovirus,RCMV)感染大鼠星形胶质细胞后,对神经干细胞分化的影响。原代分离培养新生大鼠星形胶质细胞和胚胎海马神经干细胞,将星形胶质细胞感染RCMV后和神经干细胞在Transwell24孔共培养体系下进行共培养,同时设对照组;用免疫荧光染色等方法检测神经干细胞与感染RCMV的星形胶质细胞共培养后,其分化细胞中神经元微管相关蛋白(microtubule-associated protein 2,MAP2)和星形胶质细胞胶质纤维酸性蛋白(glial fibril—lary acidic protein,GFAP)的表达。结果发现,感染RCMV的星形胶质细胞与神经干细胞共培养时,神经干细胞分化减慢,分化成的神经元和星形胶质细胞比率低于对照组,提示星形胶质细胞感染RCMV后可抑制神经干细胞的分化,可能与RCMV影响星形胶质细胞合成和分泌各种营养因子,干扰了神经干细胞的分化进程有关。  相似文献   

6.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Summary In order to distinguish the effects of genetic sex from those of sex hormones on the sexual differentiation of dopaminergic neurons, catecholamine synthesis was studied in gender-specific cultures of embryonic day-14 rat diencephalon. In addition to embryos from normal dams, embryos were used whose mothers had been treated with the estrogen antagonist tamoxifen or the testosterone antagonist cyproterone acetate on days 12 and 13 of gestation. Cultures from embryos of untreated dams were fed daily with a medium containing 17-estradiol or testosterone. After 10 days in vitro, cultures were immunostained for tyrosine hydroxylase and the accumulation of dihydroxyphenylalanine (DOPA) was measured in the presence of the DOPA decarboxylase inhibitor NSD 1015. Rates of DOPA synthesis, unlike the numbers of tyrosine hydroxylase-immunoreactive neurons, were markedly higher in female cultures under all experimental conditions. Treatment of dams with antisteroids prior to removal of the embryos had no influence on these results. Treatment of cultures with both steroids decreased DOPA formation in a dose-dependent manner without altering the sex difference. These results suggest that cultured diencephalic dopaminergic neurons develop sex differences in the activity of tyrosine hydroxylase. This sexual dimorphism is initiated independently of the action of gonadal steroid hormones. Sex hormones exert an additional modulatory influence on the activity of the enzyme but do not abolish or reverse sex differences. Therefore, the concept of a purely epigenetic mode of sexual differentiation of the mammalian brain needs to be broadened to incorporate other mechanisms, such as the cell-autonomous fulfillment of a sex-specific genetic program.  相似文献   

8.
Glial fibrillary acidic protein-positive astrocytes, but not neurons or fibroblasts, support the differentiation of an oligodendroglial precursor cell expressing O4 antigen and vimentin into an O4 antigen-positive, but vimentin-negative oligodendrocyte. Further maturation into galactocerebroside (O1)-positive oligodendrocytes is, however, not achieved under the culture conditions used, neither in the presence of astrocytes nor neurons.  相似文献   

9.
Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated by astrocytes.  相似文献   

10.
11.
Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) mRNA before differentiation. BDNF gene expression significantly decreases with their differentiation into the specific lineage, whereas CNTF gene expression significantly increases. The temporal pattern of neurotrophic factor gene expression in progenitor cells is similar to that of the spinal cord during postnatal development. Approximately 50% of spinal progenitor cells differentiated into astrocytes. To determine the effect of endogenous CNTF on their differentiation, we neutralized endogenous CNTF by administration of its polyclonal antibody. Neutralization of endogenous CNTF inhibited the differentiation of progenitor cells into astrocytes, but did not affect the numbers of neurons or oligodendrocytes. Furthermore, to mimic the profile of neurotrophic factors in the spinal cord during embryonic development, we applied BDNF or neurotrophin (NT)-3 exogenously in combination with the anti-CNTF antibody. The exogenous application of BDNF or NT-3 promoted the differentiation of these cells into neurons or oligodendrocytes, respectively. These findings suggest that endogenous CNTF and exogenous BDNF and NT-3 play roles in the differentiation of embryonic spinal cord derived progenitor cells into astrocytes, neurons and oligodendrocytes, respectively.  相似文献   

12.
Nucleotide excision repair (NER) is a DNA repair pathway, which eliminates various types of helix-distorting DNA damage including some forms of oxidative damage and UV-induced photoproducts. To understand why patients with NER-defective disorders develop progressive neurological abnormalities, we investigated NER capabilities in neural cells. Primary cultured neurons and astrocytes derived from rat embryonic brains were prepared in mixed-cell cultures, and fibroblasts from the same embryos were cultured for comparison. Neurons in culture were unable to proliferate, while cultured astrocytes maintained that capacity. Determination of (6-4) photoproducts in situ using antibodies against those DNA lesions was used to measure NER capabilities in individual neural cells, which were identified by staining with specific cell markers. The results demonstrate that both neurons and astrocytes have significantly lower NER capabilities than fibroblasts. That result was consistent with the finding that levels of an NER-related protein (proliferating cell nuclear antigen, PCNA) recruited at the localized UV-damage sites were lower in neurons and in astrocytes than in fibroblasts. Interestingly, the degrees of NER deterioration in those neural cells were almost equivalent to those found in NER-defective human fibroblasts (TTD2VI) that show an increased sensitivity to UV. Thus, the present study suggests that an attenuated NER capacity is not specific to post-mitotic neurons, but may be common to neural cells constituting the central nervous system regardless of their residual proliferative capacity. Although the reduced but substantial NER capability of neural cells is indispensable to preventing progressive neurological abnormalities, that low NER capability might have implications for brain ageing.  相似文献   

13.
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.  相似文献   

14.
《The Journal of cell biology》1990,110(6):2087-2098
Immature avian sympathetic neurons are able to proliferate in culture for a limited number of divisions albeit expressing several neuron- specific properties. The effect of avian retroviral transfer of oncogenes on proliferation and differentiation of sympathetic neurons was investigated. Primary cultures of 6-d-old quail sympathetic ganglia, consisting of 90% neuronal cells, were infected by Myelocytomatosis virus (MC29), which contains the oncogene v-myc, and by the v-src-containing Rous sarcoma virus (RSV). RSV infection, in contrast to findings in other cellular systems, resulted in a reduction of neuronal proliferation as determined by 3H-thymidine incorporation (50% of control 4 d after infection) and in increased morphological differentiation. This is reflected by increased neurite production, cell size, and expression of neurofilament protein. In addition, RSV- infected neurons, unlike uninfected cells, are able to survive in culture for time periods up to 14 d in the absence of added neurotrophic factors. In contrast, retroviral transfer of v-myc stimulated the proliferation of immature sympathetic neurons preserving many properties of uninfected cells. The neuron-specific cell surface antigen Q211 and the adrenergic marker enzyme tyrosine hydroxylase were maintained in MC29-infected cells and in the presence of chick embryo extract the cells could be propagated over several weeks and five passages. Within 7 d after infection, the number of Q211-positive neurons increased approximately 100-fold. These data demonstrate distinct and different effects of v-src and v-myc-containing retroviruses on proliferation and differentiation of sympathetic neurons: v-src transfer results in increased differentiation, whereas v- myc transfer maintains an immature status reflected by proliferation, immature morphology, and complex growth requirements. The possibility of expanding immature neuronal populations by transfer of v-myc will be of considerable importance for the molecular analysis of neuronal proliferation and differentiation.  相似文献   

15.
Precursor cells of the embryonic cortex sequentially generate neurons and then glial cells, but the mechanisms regulating this neurogenic-to-gliogenic transition are unclear. Using cortical precursor cultures, which temporally mimic this in vivo differentiation pattern, we demonstrate that cortical neurons synthesize and secrete the neurotrophic cytokine cardiotrophin-1, which activates the gp130-JAK-STAT pathway and is essential for the timed genesis of astrocytes in vitro. Our data indicate that a similar phenomenon also occurs in vivo. In utero electroporation of neurotrophic cytokines in the environment of embryonic cortical precursors causes premature gliogenesis, while acute perturbation of gp130 in cortical precursors delays the normal timed appearance of astrocytes. Moreover, the neonatal cardiotrophin-1-/- cortex contains fewer astrocytes. Together, these results describe a neural feedback mechanism; newly born neurons produce cardiotrophin-1, which instructs multipotent cortical precursors to generate astrocytes, thereby ensuring that gliogenesis does not occur until neurogenesis is largely complete.  相似文献   

16.
Little is known about the effect of astroglial GLT-1 of post-stroke depression (PSD) rat model on the function of neural stem cells (NSCs). This study aimed to investigate whether astroglial GLT-1 of PSD rats affect differentiation of NSCs from neonatal rat hippocampus and synaptic formation of NSC-derived neurons. Astrocytes were isolated from the left hippocampus of normal adult SD rats and PSD rats. A lentiviral vector was used to silence the expression of GLT-1 in astrocytes of PSD rats. NSCs were respectively co-cultured with normal (control), PSD, and GLT-1 silenced astrocytes for 7 days. GLT-1, GFAP, MAP2, Synaptophysin (SYN), glutamate (Glu) and glutamine (Gln) were respectively measured by qRT-PCR, western blot, immunofluorescence and efficient mass spectrometry (MS). PSD astrocytes increased the number of NSC-derived astrocytes, but inhibited the expression of GLT-1 of NSC-derived astrocytes and synapses of NSC-derived neurons. On the basis of the low expression of GLT-1 in PSD astrocytes, we further silenced GLT-1 in PSD astrocytes. Interestingly, GLT-1 silenced PSD astrocytes more obviously inhibited synapses of NSC-derived neurons, but increased the number of NSC-derived neurons and reversed the expression of GLT-1 in NSC-derived astrocytes. At the same time, concentration of glutamate in the medium elevated, and glutamine in the medium gradually reduced. In NSC-derived neurons and astrocytes, glutamate metabolism was also affected by changed GLT-1. Down-expressed GLT-1 in PSD astrocytes stimulated NSCs differentiating into astrocytes, but inhibiting the formation of functional synapses by influencing glutamate metabolism in vitro.  相似文献   

17.
The remarkable developmental potential and replicative capacity of human embryonic stem (ES) cells promise an almost unlimited supply of specific cell types for transplantation therapies. Here we describe the in vitro differentiation, enrichment, and transplantation of neural precursor cells from human ES cells. Upon aggregation to embryoid bodies, differentiating ES cells formed large numbers of neural tube-like structures in the presence of fibroblast growth factor 2 (FGF-2). Neural precursors within these formations were isolated by selective enzymatic digestion and further purified on the basis of differential adhesion. Following withdrawal of FGF-2, they differentiated into neurons, astrocytes, and oligodendrocytes. After transplantation into the neonatal mouse brain, human ES cell-derived neural precursors were incorporated into a variety of brain regions, where they differentiated into both neurons and astrocytes. No teratoma formation was observed in the transplant recipients. These results depict human ES cells as a source of transplantable neural precursors for possible nervous system repair.  相似文献   

18.
Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS.  相似文献   

19.
Cultured neurons from rat embryo striatum were found to contain two structurally distinct forms of pp60c-src. The 60-kilodalton (kDa) form appeared similar to pp60c-src from cultured rat fibroblasts or astrocytes. The 61-kDa form was specific to neurons and differed in the NH2-terminal 18 kDa of the molecule. In undifferentiated neurons the predominant phosphorylated species of pp60c-src was the fibroblast form. Upon differentiation, a second phosphorylated form of pp60c-src was detected. This form had two or more additional sites of serine phosphorylation within the NH2-terminal 18-kDa region of the molecule, one of which was Ser-12. The specific protein-tyrosine kinase activity of the total pp60c-src population increased 14-fold, as measured by autophosphorylation, or 7-fold, as measured by phosphorylation of an exogenous substrate, as striatal neurons differentiated. This elevation in protein kinase activity occurred without a detectable decrease in Tyr-527 phosphorylation or increase in Tyr-416 phosphorylation. Our results support the idea that the expression of the neuron-specific form of pp60c-src and the increase in specific protein kinase activity may be important for neuronal differentiation.  相似文献   

20.
Cells derived from the neonatal rat pineal gland were cocultured with cells derived from neonatal rat superior cervical ganglia (SCG) in an attempt to determine whether a sympathetic target organ with only adrenergic properties could enhance the development of adrenergic transmitter properties in sympathetic neurons in tissue culture. Choline acetyltransferase was measured as an index of cholinergic differentiation, and tyrosine hydroxylase was measured as an index of adrenergic differentiation. As indices of total cell number and cellular volume, DNA and protein, respectively, were also measured. We found that the pineal-SCG cocultures contained ten times greater choline acetyltransferase activity than sister neuronal cultures cultured without pineal cells, thus indicating that the pineal cells enhanced cholinergic properties in the sympathetic neurons. This cholinergic enhancement was dependent upon the presence of nerve growth factor and could not be obtained with pineal-conditioned medium. Tyrosine hydroxylase activity, measured on cultures sister to those mentioned above, was low in all cultures and decreased somewhat in SCGs cultured alone. TH activity in the pineal-SCG cocultures, however, increased slightly. Some tyrosine hydroxylating activity developed in pineals cultured alone, however, and may have been responsible for the small increase in tyrosine hydroxylase activity noted in the pineal-SCG cocultures. The implications of these results for a determination of the role that target organ plays in the development of the transmitter properties of sympathetic neurons are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号