首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
ABSTRACT

In Malaysia, males of the noctuid moth Amyna natalis were observed producing a continuous ultrasonic song of high intensity (about 102 dB SPL measured at a distance of 10 cm). The frequency spectrum of the sound impulses had its peak between 60 and 80 kHz. During song production the animals were perching on plants and moving their wings up and down quickly. Simultaneously, by twisting the wings it seems likely that a male-specific “bubble” in the forewing functions as a tymbal, resulting in sound production.  相似文献   

2.
Echolocation sounds of Rhinolophus ferrumequinum nippon as they approached a fluttering moth (Goniocraspidum pryeri) were investigated using an on-board telemetry microphone (Telemike). In 40?% of the successful moth-capture flights, the moth exhibited distinctive evasive flight behavior, but the bat pursued the moth by following its flight path. When the distance to the moth was approximately 3-4?m, the bats increased the duration of the pulses to 65-95?ms, which is 2-3 times longer than those during landing flight (30-40?ms). The mean of 5.8 long pulses were emitted before the final buzz phase of moth capture, without strengthening the sound pressure level. The mean duration of long pulses (79.9?±?7.9?ms) corresponded to three times the fluttering period of G. pryeri (26.5?×?3?=?79.5?ms). These findings indicate that the bats adjust the pulse duration to increase the number of temporal repetitions of fluttering information rather than to produce more intense sonar sounds to receive fine insect echoes. The bats exhibited Doppler-shift compensation for echoes returning from large static objects ahead, but not for echoes from target moths, even though the bats were focused on capturing the moths. Furthermore, the echoes of the Telemike recordings from target moths showed spectral glints of approximately 1-1.5?kHz caused by the fluttering of the moths but not amplitude glints because of the highly acoustical attenuation of ultrasound in the air, suggesting that spectral information may be more robust than amplitude information in echoes during moth capturing flight.  相似文献   

3.
Using an ethological approach, we studied the possibility of sound perception as well as probable contribution of diverse mechanosensory systems composing the mechanosensory complex to triggering of motor responses to sound stimulation in imaginal crickets Phaeophilacris bredoides lacking the tympanal organs (“deaf”). It was shown that Ph. bredoides imagoes are able to perceive sounds and respond to sound cues by a locomotor reaction in a relatively broad frequency range which becomes narrower as sound intensity decreases [0.1–6.0 kHz (111 ± 3 dB SPL), 0.1–1.5 kHz (101 ± 3 dB SPL), 0.1–1.3 kHz (91 ± 3 dB SPL), 0.1–0.6 kHz (81 ± 3 dB SPL), and 0.1 kHz (71 ± 3 dB SPL)]. Sound perception and triggering ofmotor responses appear to involve the cercal organs (CO), subgenual organs (SO) and, probably, other distant mechanosensory organs (DMO). CO are essential for triggering of locomotor responses to sound within the ranges of 1.6–6.0 kHz (111 ± 3 dB SPL), 1–1.5 kHz (101 ± 3 dB SPL), 0.9–1.3 kHz (91 ± 3 dB SPL), and 0.5–0.6 kHz (81 ± 3 dB SPL). SO and, probably, other DMO provide locomotor responses to sound within the ranges of 0.1–6.0 kHz (111 ± 3 dB SPL), 0.1–0.8 kHz (101 ± 3 dB SPL), 0.1–0.4 kHz (91 ± 3 dB SPL), and 0.1–0.4 kHz (81 ± 3 dB SPL). From this, it follows that “deaf” (nonsinging) Ph. bredoides can perceive sounds using CO, SO and, probably, other DMO, which (as in singing crickets) are likely to compose an integrated mechanosensory complex providing adequate acoustic behavior of this cricket species. Performance efficiency and sensitivity of the mechanosensory complex (specifically, of CO) rely on the thoroughness of grooming. Following self-cleaning of CO, the level of cricket motor activity in response to cue presentation returned to the baseline and sometimes even increased. Whether or not crickets of this species communicate acoustically is yet to be found out, however, we suggest that the mechanosensory complex, which triggers motor responses to a sound, is normally involved in the defensive escape response aimed at rescuing from predators.  相似文献   

4.
The auditory responsiveness of a number of neurones in the meso- and metathoracic ganglia of the locust, Locusta migratoria, was found to change systematically during concomitant wind stimulation. Changes in responsiveness were of three kinds: a suppression of the response to low frequency sound (5 kHz), but an unchanged or increased response to high frequency (12 kHz) sound; an increased response to all sound; a decrease in the excitatory, and an increase in the inhibitory, components of a response to sound. Suppression of the response to low frequency sound was mediated by wind, rather than by the flight motor. Wind stimulation caused an increase in membrane conductance and concomitant depolarization in recorded neurones. Wind stimulation potentiated the spike response to a given depolarizing current, and the spike response to a high frequency sound, by about the same amount. The strongest wind-related input to interneuron 714 was via the metathoracic N6, which carries the axons of auditory receptors from the ear. The EPSP evoked in central neurones by electrical stimulation of metathoracic N6 was suppressed by wind stimulation, and by low frequency (5 kHz), but not high frequency (10 kHz), sound. This suppression disappeared when N6 was cut distally to the stimulating electrodes. Responses to low frequency (5 kHz), rather than high frequency (12 kHz), sounds could be suppressed by a second low frequency tone with an intensity above 50-55 dB SPL for a 5 kHz suppressing tone. Suppression of the electrically-evoked EPSP in neurone 714 was greatest at those sound frequencies represented maximally in the spectrum of the locust's wingbeat. It is concluded that the acoustic components of a wind stimulus are able to mediate both inhibition and excitation in the auditory pathway. By suppressing the responses to low frequency sounds, wind stimulation would effectively shift the frequency-response characteristics of central auditory neurones during flight.  相似文献   

5.
Auditory-evoked evasive manoeuvres in free-flying locusts and moths   总被引:1,自引:0,他引:1  
We presented free-flying locusts (Locusta migratoria L.) with sounds that varied in temporal structure and carrier frequency as they flew toward a light source in a flight room under controlled temperature and light conditions. Previous studies have shown tethered locusts react more often to trains of 30-kHz pulses than to pulse trains below 10 kHz. Further, this acoustic startle response has been suggested to function in bat-avoidance. We expected free-flying locusts to respond similarly; however, we found locusts responded to all sounds we presented, not just high-frequency, bat-like sounds. Response rates of turns, loops, and dives varied from 6% to 26% but were statistically independent of carrier frequency and/or pulse structure. Free-flying moths and tethered locusts were tested using a subset of our acoustic stimuli under the same temperature and light conditions as the free-flying locusts. Moth responses were carrier frequency dependent as were responses of tethered locusts positioned along the flight path observed in our free-flight trials. All responses were unaffected by a 90% reduction in room light. We conclude that locusts possess an acoustic startle response evocable in free flight, however, free-flying locusts do not show the same discrimination observed in tethered locusts under similar conditions.Abbreviations ASR acoustic startle response - dB SPL decibel sound pressure level (RMS re: 20 Pa)  相似文献   

6.
Using an ethological approach, we studied the possibility of sound perception as well as probable contribution of diverse mechanosensory systems composing the mechanosensory complex to triggering of motor responses to sound stimulation in the cricket Gryllus bimaculatus larvae. It was shown that larvae can perceive sounds and respond to them by a locomotor reaction in a relatively broad frequency range, which becomes narrower as sound intensity decreases [0.1–6.6 kHz (111 ± 3 dB SPL), 0.1–1.4 kHz (101 ± 3 dB SPL), 0.1–0.8 kHz (91 ± 3 dB SPL]. Sound perception and triggering of motor responses appear to involve the cercal organs (CO), subgenual organs (SO) and, probably, other distant mechanosensory organs (DMO). Normal functioning of CO is essential for triggering locomotor responses to sound within the ranges of 1–1.4 kHz (101 ± 3 dB SPL) and 0.1–0.8 kHz (91 ± 3 dB SPL). CO are not necessary for triggering of motor responses to cues with an intensity of 111 ± 3 dB. SO and, probably, other DMO provide locomotor responses to sound within the ranges of 0.1–6.6 kHz (111 ± 3 dB SPL), 0.1–0.9 kHz (101 ± 3 dB SPL), and 0.1–0.3 kHz (91 ± 3 dB SPL). Thus, last instar larvae of G. bimaculatus lacking the tympanal organs can perceive sounds using CO, SO and, probably, other DMO, which (as in cricket imagoes) are likely to compose an integrated mechanosensory complex providing adequate acoustic behavior of this cricket species. Performance efficiency and sensitivity of the mechanosensory complex (specifically, CO) rely on the thoroughness of grooming. After self-cleaning of CO, the level of larval motor activity in response to cue presentation returned to the baseline and sometimes even increased. We assume that under normal conditions the mechanosensory complex, which triggers motor responses to a sound, is involved in the defensive escape response aimed at rescuing from predators.  相似文献   

7.
Abstract. Male lesser wax moths, Achroia grisella (Fabricius) (Lepidoptera: Pyralidae: Galleriinae), produce both a pheromone and an ultrasonic acoustic signal that function in mate attraction. We describe the structure of the acoustic signal, in particular the interpulse intervals and the spectral properties of the pulses. The song consists of a train of ultrasonic pulses. The interpulse interval is usually bimodally distributed, but can sometimes be unimodal. This reflects variation in the duration of the up and down wing strokes. The pulses are also usually paired which can produce multimodality of the interpulse intervals. These paired pulses probably reflect wingbeat asynchrony because they are not found in males in which the signalling capability of one wing's sound producing structure is abolished.
The song's frequency spectrum has peaks at around 80 and 100 kHz. The first peak varies significantly with male size, with larger males producing a lower frequency peak. The second peak is associated with male age, with 1-day-old males producing songs with a lower frequency second peak. Thus the ultrasonic song of lesser wax moths is more complex in structure than previously reported and could provide potentially important cues to females. However, the ability of females to discriminate such detail is not known.  相似文献   

8.
Summary MaleThecophora fovea (Tr.) (Noctuidae) sing continuously for several minutes by rubbing the 1. tarsal segment of the metathoracic leg against a stridulatory swelling on the hindwing. In Northern Yugoslavia (Slovenia) the males emerge in late October and start stridulating about a week later when the females emerge.The sounds are pulse trains consisting of 10–12 ms long sound pulses with main energy around 32 kHz and a PRR of 20 pulses/s. The mechanics of the sound producing apparatus was studied by activating the stridulatory swelling with short sound impulses. The impulse response of the swelling was recorded by laser vibrometry and amplitude spectra of the vibrations showed maximum velocities between 25 and 35 kHz. Hence, it seems likely that the stridulatory swelling is driven as a mechanical oscillator with a resonance frequency which determines the carrier frequency of the sounds.Audiograms of both males and females showed peak sensitivities at 25–30 kHz. The median threshold at the BF was 36 dB SPL. The peak intensity of the sound pulses was 83 dB SPL at 1 m, which should enable the moths to hear each other at distances of around 30 m. Therefore sound production inT. fovea might function in long distance calling. It is argued thatT. fovea can survive making such a noise in spite of being palatable to bats because it flies so late in the year that it is temporally isolated from bats.Abbreviations PRR pulse repetition rate - SPL sound pressure level - BF best frequency  相似文献   

9.
The selectivity of female phonotactic responses to synthetic advertisement calls was tested in choice situations. Preferences based on differences in the linear rise-time of synthetic pulses depended on intensity and carrier frequency. When the carrier frequency was 1.1 kHz, simulating the low-frequency peak in the advertisement call, females preferred alternatives with slower rise-time pulses that differed by 5 ms at playback levels of 75 dB SPL and higher. A rise-time difference of 10 ms was discriminated at 65 dB SPL. When the carrier frequency was 2.2 kHz, simulating the high-frequency peak in the call, females discriminated a 5-ms difference in rise-time only at 85 dB SPL. Females showed no preference when the difference was 10 ms at lower playback levels. The difference in the thresholds (about 15–20 dB) for discriminating differences in rise-time at the two carrier frequencies was greater than the difference in behavioral thresholds for these two frequencies (about 10 dB). This result suggests that rise-time discrimination can be mediated solely by the neural channel mainly tuned to the low-frequency peak in the call. Females probably assess differences in rise-time by comparing the first few pulses of each call rather than by averaging over the entire call. Accepted: 30 March 1999  相似文献   

10.
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31–52 dB RMS SPL), measured at the subjects’ position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18–39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41–51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7–2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39–47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.  相似文献   

11.
Green lacewings stop flying in response to ultrasound. The behavioural response begins with folding of the wings, which starts about 40 msec following stimulation. About 66 msec later potentials from the indirect flight muscles cease. Insects resume their stationary flight after a certain period of time, which is dependent on the stimulus duration. Consistent responses occur only during the insects' night. Stimuli eliciting the cessation of flight have the following parameters: frequencies of from 15 to 140 kHz, intensities above 55 dB, single pulses of from 1 to 100 msec in duration, and pulse sequences having repetition rates up to 70 or 80 pulses/sec. Pulse sequences from 0·1 to 1 sec produce response durations that last longer than the stimulus, whereas pulse sequences longer than 1 sec, elicit responses that do not last as long as the stimulus. The duration of the response remains nearly constant when single ultrasonic pulses are given. This flight cessation behaviour provides a mechanism whereby green lacewings can avoid predation by bats. Responses seen in green lacewings are compared with similar responses in noctuid moths.  相似文献   

12.
Summary The tympanate, arctiid moth,Cycnia tenera responds to pulsed, 30 kHz acoustic stimuli resembling bat echolocation signals by emitting trains of clicks. This phonoresponse was used to determine that this moth is maximally sensitive to stimulus pulse repetition rates of 30–50 pulses/s, rates typically emitted by bats shortly before they close with their targets. At rates both above and below this optimum moths exhibit higher thresholds and reduced responsiveness. These data suggest thatC. tenera is capable of using the repetition rate emitted by an approaching bat as a cue in determining the relative proximity of the bat. The use of repetition rate information should allow this moth both an unambiguous indication of a bat at very close range as well as the ability to distinguish sources of nocturnal, high-frequency sounds not emitted by predators.  相似文献   

13.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

14.
Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae)   总被引:4,自引:3,他引:1  
1. In the present work, we show that in flight, bushcrickets not previously known to respond to ultrasound alter their flight course in response to ultrasonic stimuli. Such stimuli elicit in flying Neoconocephalus ensiger an extension of the front and middle legs along the body and a rapid closure of all 4 wings (Fig. 1). This is a short latency acoustic startle response to ultrasound, consistent with acoustic startle responses of other insects. 2. The percentage of trials on which acoustic startle responses were elicited was maximum (90%) for sound frequencies ranging from 25 to at least 60 kHz. No acoustic startle response was observed at frequencies of 5 or 10 kHz (Fig. 2). The threshold for the response was roughly 76 dB between 25 to 60 kHz (Fig. 2) and the behavioral latency was 45 ms (Fig. 3). Recordings from flight muscles show that they cease discharging during the acoustic startle response (Fig. 4). 3. The characteristics of the acoustic startle response match those of an auditory interneuron called the T-neuron. The frequency sensitivity of this neuron is greatest for sound frequencies ranging from 13 to 60 kHz (Fig. 6). Moreover, we found that the neuron produces many more spikes to ultrasound (30 kHz) of increasing intensities than to a conspecific communication sound, whose dominant frequency is 14 kHz (Fig. 7).  相似文献   

15.
Zeng J  Xiang N  Jiang L  Jones G  Zheng Y  Liu B  Zhang S 《PloS one》2011,6(11):e27190
Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40-60 kHz) than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5-6%.  相似文献   

16.
Abstract Indian meal moths, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), have ears which are sensitive to high‐frequency calls produced by echolocating, insectivorous bats. The influence of artificially generated, high‐intensity, ultrasound signals (25 kHz, 106 dB SPL at 1 m distance) on different parameters involved in the odour‐mediated mating behaviour of this species and its potential use in population control was investigated. All moths flying towards olfactory cues in flight tunnel experiments reacted strongly to a 1 s ultrasound pulse by cessation of flight and falling out of the odour plume. The source contact proportion of both male moths orienting towards the female‐produced sex pheromone and of mated female moths orienting towards an oviposition cue was reduced by 40%, compared to unexposed moths. Calling females responded to the sound by retraction of the ovipositor or by falling to the ground. Long‐term exposure to repetitive pulses of ultrasound suppressed female calling by up to 27%. Furthermore, mating in plastic tents was disrupted by up to 58% in ultrasound‐treated tents using different sound regimens, compared to control tents. The results are discussed in relation to the potential use of ultrasound technology for the population control of pyralid stored product pests.  相似文献   

17.
The separate impulses contributed by the A1 and A2 acoustic sense cells in the tympanic organs of the noctuids, Autographa pseudogamma and Noctua c.-nigrum, and by the A1, A2, and A3 sense cells in the tympanic organ of the geometrid, Ennomos magnarius, were identified and counted from oscillograms grams made as the moths were exposed to ultrasonic pulses of different intensities. These data were used to construct curves relating the response/intensity characteristics of the less sensitive acoustic sense cells to that of the most sensitive unit, A1. The A2 sense cells of the noctuids were found to be from 20 to 30 dB less sensitive than A1 at sound frequencies to which these ears are most sensitive. In the geometrid it was found that the A2 sense cell was 15 dB less sensitive than A1 and 12 dB more sensitive than A3. Only traces of the response of the fourth geometrid acoustic sense cell (A4) could be identified at high sound intensities. In both noctuids and geometrids the acoustic sensitivity of A2 relative to A1 remained unchanged when tested at selected ultrasonic frequencies between 28 and 50 kHz. This confirms the conclusion that the ears of these moths are incapable of pitch discrimination over this frequency range. Each of the systems had a dynamic range of 40 to 45 dB, that of the geometrid showing greater range overlap of the four A cells and hence greater capacity for sound intensity discrimination.  相似文献   

18.
Clark CJ 《Biology letters》2008,4(4):341-344
Sounds produced continuously during flight potentially play important roles in avian communication, but the mechanisms underlying these sounds have received little attention. Adult male Red-billed Streamertail hummingbirds (Trochilus polytmus) bear elongated tail streamers and produce a distinctive 'whirring' flight sound, whereas subadult males and females do not. The production of this sound, which is a pulsed tone with a mean frequency of 858 Hz, has been attributed to these distinctive tail streamers. However, tail-less streamertails can still produce the flight sound. Three lines of evidence implicate the wings instead. First, it is pulsed in synchrony with the 29 Hz wingbeat frequency. Second, a high-speed video showed that primary feather eight (P8) bends during each downstroke, creating a gap between P8 and primary feather nine (P9). Manipulating either P8 or P9 reduced the production of the flight sound. Third, laboratory experiments indicated that both P8 and P9 can produce tones over a range of 700-900 Hz. The wings therefore produce the distinctive flight sound, enabled via subtle morphological changes to the structure of P8 and P9.  相似文献   

19.
Size, peripheral auditory tuning and target strength in noctuid moths   总被引:1,自引:0,他引:1  
We investigated relationships among body size, the frequency of peak auditory sensitivity (best frequency) and acoustic conspicuousness (measured as target strength) to simulated bat echolocation calls in a range of tympanate moths (Lepidoptera: Noctuidae). Audiograms of Amphipyra pyramidea Linnaeus, Agrotis exclamationis Linnaeus, Omphaloscelis lunosa Haworth and Xestia xanthographa Denis and Schiffermüller are described for the first time. Best frequency was inversely related to forewing length, an index of body size. Models predict that target strength falls off rapidly once wavelength (1/frequency) exceeds some defined feature of target size (e.g. circumference for spheres). We investigated how target strength varies in relation to target size and emitted frequency for simple targets (paper discs) and for moths. Target strength fell rapidly when target radius/wavelength < 2 for paper discs of similar size to many noctuid moths. Target strength fell rapidly below wing‐length/wavelength ratios of 2 in relatively small (O. lunosa, wing‐length = 15.2 ± 0.4 mm, best frequency = 45 kHz) and large (N. pronuba, wing‐length = 24.6 ± 0.8 mm, best frequency = 15 kHz) noctuid species, and decreased rapidly at frequencies below 25 kHz in both species. These target strengths were used to predict the detection distance of the moths by bat sonar between 10 and 55 kHz. Predicted detection distances of both species were maximal for fictive call frequencies of 20 kHz, and were reduced at lower frequencies due to decreased target strength and at higher frequencies by excess atmospheric attenuation. Both relatively large and small noctuid moths are therefore strong acoustic targets to bats that echolocate at relatively low frequencies. Bats may emit allotonic calls at low frequency because the costs of reduced detection range are smaller than the benefits of reduced audibility to moths. Because best frequency scales with body size and maximum detection distance is not very sensitive to body size, noctuid moths in the size range examined do not necessarily have best frequencies that would match the call frequencies of bats that may detect the moths at greatest distance precisely. Hence, best frequency may be constrained in part by body size.  相似文献   

20.
Males of the pyralid moth, Syntonarcha iriastis Meyrick, perch on vegetation at the tops of trees and bushes and produce ultrasound while their wings are spread and while sclerites at the end of the abdomen are spread to expose the genitalia. Exposing the genitalia appears to engage the sound-producing mechanism; the male genitalia and eighth abdominal sternite of this species are greatly modified and include a file and scraper and possible resonating areas. Sounds produced are consistent between individuals and comprise pulses which are narrow in frequency range, the first pulse being at about 42 kHz and two following pulses at about 57 kHz. The signal is detectable with an ultrasound 'bat' detector from 20 m. Two tettigoniid species (Orthoptera) at the same site produced ultrasonic calls of similar frequencies at the same times as the moth; differences in time-amplitude patterns could be used by orienting moths to recognize conspecifics. Signalling by male S. iriastis is compared with that of other pyralid species in which females are attracted to signalling males. The behaviour of S. iriastis males differs from that of other pyralids in that they do not signal in groups or from a resource attractive to females, and do not possess glands known to produce a 'calling' pheromone. It is suggested, because of these differences, that sound production in this species does not function at close range, as argued for the wax moth Achroia grisella (Fabricius), but instead as a long-distance calling signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号