首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blood-feeding parasites, including schistosomes, hookworms, and malaria parasites, employ aspartic proteases to make initial or early cleavages in ingested host hemoglobin. To better understand the substrate affinity of these aspartic proteases, sequences were aligned with and/or three-dimensional, molecular models were constructed of the cathepsin D-like aspartic proteases of schistosomes and hookworms and of plasmepsins of Plasmodium falciparum and Plasmodium vivax, using the structure of human cathepsin D bound to the inhibitor pepstatin as the template. The catalytic subsites S5 through S4' were determined for the modeled parasite proteases. Subsequently, the crystal structure of mouse renin complexed with the nonapeptidyl inhibitor t-butyl-CO-His-Pro-Phe-His-Leu [CHOHCH(2)]Leu-Tyr-Tyr-Ser- NH(2) (CH-66) was used to build homology models of the hemoglobin-degrading peptidases docked with a series of octapeptide substrates. The modeled octapeptides included representative sites in hemoglobin known to be cleaved by both Schistosoma japonicum cathepsin D and human cathepsin D, as well as sites cleaved by one but not the other of these enzymes. The peptidase-octapeptide substrate models revealed that differences in cleavage sites were generally attributable to the influence of a single amino acid change among the P5 to P4' residues that would either enhance or diminish the enzymatic affinity. The difference in cleavage sites appeared to be more profound than might be expected from sequence differences in the enzymes and hemoglobins. The findings support the notion that selective inhibitors of the hemoglobin-degrading peptidases of blood-feeding parasites at large could be developed as novel anti-parasitic agents.  相似文献   

2.
Aspartic peptidase inhibitors, which are themselves proteins, are strong inhibitors (small inhibition constants) of some aspartic peptidases but not others. However, there have been no studies of the kinetics of the interaction between a proteinaceous aspartic peptidase inhibitor and aspartic peptidases. This paper describes an analysis of rate constants for the interaction between recombinant squash aspartic peptidase inhibitor (rSQAPI) and a panel of aspartic peptidases that have a range of inhibition constants for SQAPI. Purified rSQAPI completely inhibits pepsin at a 1:1 molar ratio of pepsin to rSQAPI monomer (inhibition constant 1 nM). The interaction of pepsin with immobilized rSQAPI, at pH values between 3.0 and 6.0, was monitored using surface plasmon resonance. Binding of pepsin to rSQAPI was slow (association rate constants ca 10(4)M (-1)s(-1)), but rSQAPI was an effective pepsin inhibitor because dissociation of the rSQAPI-pepsin complex was much slower (dissociation rate constants ca 10(-4)s(-1)), especially at low pH values. Similar results were obtained with a His-tagged rSQAPI. Strong inhibition (inhibition constant 3 nM) of one isoform (rSap4) of the family of Candida albicans-secreted aspartic peptidases was, as with pepsin, characterized by slow binding of rSap4 and slower dissociation of the rSap4-inhibitor complex. In contrast, weaker inhibition of the Glomerella cingulata-secreted aspartic peptidase (inhibition constant 7 nM) and the C. albicans rSap1 and Sap2 isoenzymes (inhibition constants 25 and 400 nM, respectively) was, in each case, characterized by a larger dissociation rate constant.  相似文献   

3.
Cysteine peptidase inhibitor genes (ICP) of the chagasin family have been identified in protozoan (Leishmania mexicana and Trypanosoma brucei) and bacterial (Pseudomonas aeruginosa) pathogens. The encoded proteins have low sequence identities with each other and no significant identity with cystatins or other known cysteine peptidase inhibitors. Recombinant forms of each ICP inhibit protozoan and mammalian clan CA, family C1 cysteine peptidases but do not inhibit the clan CD cysteine peptidase caspase 3, the serine peptidase trypsin or the aspartic peptidases pepsin and thrombin. The functional homology between ICPs implies a common evolutionary origin for these bacterial and protozoal proteins.  相似文献   

4.
The gene encoding an aspartic proteinase precursor (proplasmepsin) from the rodent malaria parasite Plasmodium berghei has been cloned. Recombinant P. berghei plasmepsin hydrolysed a synthetic peptide substrate and this cleavage was prevented by the general aspartic proteinase inhibitor, isovaleryl pepstatin and by Ro40-4388, a lead compound for the inhibition of plasmepsins from the human malaria parasite Plasmodium falciparum. Southern blotting detected only one proplasmepsin gene in P. berghei. Two plasmepsins have previously been reported in P. falciparum. Here, we describe two further proplasmepsin genes from this species. The suitability of P. berghei as a model for the in vivo evaluation of plasmepsin inhibitors is discussed.  相似文献   

5.
Proteases and their inhibitors: today and tomorrow.   总被引:1,自引:0,他引:1  
A major incentive in inhibitor research is that control of limited proteolysis constitutes a valuable pharmacological tool. Protease inhibitors have proved to be successful in influencing pathogenesis in many experimental models but a breakthrough to use in human therapy has mainly been restricted to aprotinin and angiotensin converting enzyme (ACE) inhibitors. However, the success of ACE inhibitors as pharmacological tools in hypertension has proved to be a strong stimulant for new protease inhibitor approaches to drug therapy. While emphasis in the search for next generations of ACE inhibitors may move from the circulation renin-angiotensin system to the local tissue systems, including heart, brain and genital tract, persistent and insightful design of renin inhibitors has already yielded highly specific molecules with potent activities in several in vivo models. The development of orally effective long-acting inhibitors will finally allow an evaluation to be made of their therapeutic profile with regard to the family of ACE inhibitors. The close relationship between renin and HIV-1 protease presents an exceptional opportunity for transfer of the knowledge acquired in renin inhibitor development during the past decade, to an accelerated generation of specific HIV-1 protease inhibitors as effective agents in treatment of AIDS. The self-assembly of 2 identical monomers into a symmetrical structure in HIV-1 protease is not only an elegant way to create an active enzyme while encoding a minimal amount of genetic information, but is also in concordance with the bilobular active-site found in mammalian aspartic proteases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The malaria parasite Plasmodium falciparum degrades host cell hemoglobin inside an acidic food vacuole during the blood stage of the infectious cycle. A number of aspartic proteinases called plasmepsins (PMs) have been identified to play important roles in this degradation process and therefore generated significant interest as new antimalarial targets. Several x-ray structures of PMII have been described previously, but thus far, structure-guided drug design has been hampered by the fact that only inhibitors comprising a statine moiety or derivatives thereof have been published. Our drug discovery efforts to find innovative, cheap, and easily synthesized inhibitors against aspartic proteinases yielded some highly potent non-peptidic achiral inhibitors. A highly resolved (1.6 A) x-ray structure of PMII is presented, featuring a potent achiral inhibitor in an unprecedented orientation, contacting the catalytic aspartates indirectly via the "catalytic" water. Major side chain rearrangements in the active site occur, which open up a new pocket and allow a new binding mode of the inhibitor. Moreover, a second inhibitor molecule could be located unambiguously in the active site of PMII. These newly obtained structural insights will further guide our attempts to improve compound properties eventually leading to the identification of molecules suitable as antimalarial drugs.  相似文献   

7.
Cysteine peptidases and their endogenous inhibitors (CPI) have been shown to be involved in tumor progression and metastasis. Since their activity has been found to be changed in tumor tissue and/or body fluids of cancer patients, the determination of the peptidase/inhibitor levels is considered as a procedure of diagnostic value. Determination of cathepsin B, its precursor and inhibitor activity in homogenates of tumors and control breast tissue samples of patients with invasive ductal and lobular breast carcinoma and with benign breast disease (BBD) was performed using fluorometric assay. Immunohistochemical staining of the breast tissue samples was carried out using polyclonal antibody against cysteine peptidase inhibitor isolated from human placenta. Procathepsin B and cathepsin B were found to be significantly increased and their endogenous inhibitors decreased in homogenates of tumors from patients with breast cancer. A correlation between procathepsin B or cathepsin B activities as well as cysteine peptidase inhibitor activity and the histopathological grading of the tumor was observed. All samples of the tumor tissue showed positive immunostaining with antibody raised against cysteine peptidase inhibitor, while in the control tissue samples the immunostaining was much weaker. Significant difference observed between the activities of cathepsin B and/or its precursor in malignant and benign tumors might serve as a useful clinical indicator in discrimination between benign and invasive tumors.  相似文献   

8.
Plasmepsins are aspartic proteases involved in the initial steps of the hemoglobin degradation pathway, a critical stage in the Plasmodium falciparum life cycle during human infection. Thus, they are attractive targets for novel therapeutic compounds to treat malaria, which remains one of the world's biggest health problems. The three-dimensional structures available for P. falciparum plasmepsins II and IV make structure-based drug design of antimalarial compounds that focus on inhibiting plasmepsins possible. However, the structural flexibility of the plasmepsin active site cavity combined with insufficient knowledge of the functional residues and of those determining the specificity of parasitic enzymes is a drawback when designing specific inhibitors. In this study, we have combined a sequence and structural analysis with molecular dynamics simulations to predict the functional residues in P. falciparum plasmepsins. The careful analysis of X-ray structures and 3D models carried out here suggests that residues Y17, V105, T108, L191, L242, Q275, and T298 are important for plasmepsin function. These seven amino acids are conserved across the malarial strains but not in human aspartic proteases. Residues V105 and T108 are localized in a flap of an interior pocket and they only establish contacts with a specific non-peptide achiral inhibitor. We also observed a rapid conformational change in the L3 region of plasmepsins that closes the active site of the enzyme, which explains earlier experimental findings. These results shed light on the role of V105 and T108 residues in plasmepsin specificities, and they should be useful in structure-based design of novel, selective inhibitors that may serve as antimalarial drugs.  相似文献   

9.
The cDNA of a cystein peptidase inhibitor was isolated from sugarcane and expressed in Escherichia coli. The protein, named canecystatin, has previously been shown to exert antifungal activity on the filamentous fungus Trichoderma reesei. Herein, the inhibitory specificity of canecystatin was further characterized. It inhibits the cysteine peptidases from plant source papain (Ki =3.3nM) and baupain (Ki=2.1x10(-8)M), but no inhibitory effect was observed on ficin or bromelain. Canecystatin also inhibits lysosomal cysteine peptidases such as human cathepsin B (Ki=125nM), cathepsin K (Ki=0.76nM), cathepsin L (Ki=0.6nM), and cathepsin V (Ki=1.0nM), but not the aspartyl peptidase cathepsin D. The activity of serine peptidases such as trypsin, chymotrypsin, pancreatic, and neutrophil elastases, and human plasma kallikrein is not affected by the inhibitor, nor is the activity of the metallopeptidases angiotensin converting enzyme and neutral endopeptidase. This is the first report of inhibitory activity of a sugarcane cystatin on cysteine peptidases.  相似文献   

10.
The plasmepsins are the aspartic proteases of malaria parasites. Treatment of aspartic protease inhibitor inhibits hemoglobin hydrolysis and blocks the parasite development in vitro suggesting that these proteases might be exploited their potentials as antimalarial drug targets. In this study, we determined the genetic variations of the aspartic proteases of Plasmodium vivax (PvPMs) of wild isolates. Two plasmepsins (PvPM4 and PvPM5) were cloned and sequenced from 20 P. vivax Korean isolates and two imported isolates. The sequences of the enzymes were highly conserved except a small number of amino acid substitutions did not modify key residues for the function or the structure of the enzymes. The high sequence conservations between the plasmepsins from the isolates support the notion that the enzymes could be reliable targets for new antimalarial chemotherapeutics.  相似文献   

11.
Legumain is a lysosomal cysteine peptidase specific for an asparagine residue in the P1-position. It has been classified as a member of clan CD peptidases due to predicted structural similarities to caspases and gingipains. So far, inhibition studies on legumain are limited by the use of endogenous inhibitors such as cystatin C. A series of Michael acceptor inhibitors based on the backbone Cbz-L-Ala-L-Ala-L-Asn (Cbz= benzyloxycarbonyl) has been prepared and resulted in an irreversible inhibition of porcine legumain. Variation of the molecular size within the 'war head' revealed the best inhibition for the compound containing the allyl ester (kobs/I=766 M(-1) s(-1)). To overcome cyclisation between the amide moiety of the Asn residue and the 'war head', several asparagine analogues have been synthesised. Integrated in halomethylketone inhibitors, azaasparagine is accepted by legumain in the P1-position. The most potent inhibitor of this series, Cbz-L-Ala-L-Ala-AzaAsn-chloromethylketone, displays a k(obs)/I value of 139,000 M(-1) s(-1). Other cysteine peptidases, such as papain and cathepsin B, are not inhibited by this compound at concentrations up to 100 microM. The synthetic inhibitors described here represent useful tools for the investigation of the structural and physiological properties of this unique asparagine-specific peptidase.  相似文献   

12.
The nonapeptide H-Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln-NH2 containing the retroviral Tyr-Pro cleavage site is a good substrate for the proteinase of human immunodeficiency viruses but it is not readily hydrolyzed by other nonviral proteinases including the structurally related pepsin-like aspartic proteinases. Replacing the Pro by L-pipecolic acid (2-piperidinecarboxylic acid) converted the substrate into an effective inhibitor of HIV-1 and HIV-2 proteinases with IC50 of approximately 1 microM. This compound showed a high degree of selectivity in that it did not inhibit cathepsin D and renin.  相似文献   

13.
Intraerythrocytic malaria parasites rapidly degrade virtually all of the host cell hemoglobin. We have cloned the gene for an aspartic hemoglobinase that initiates the hemoglobin degradation pathway in Plasmodium falciparum. It encodes a protein with 35% homology to human renin and cathepsin D, but has an unusually long pro-piece that includes a putative membrane spanning anchor. Immunolocalization studies place the enzyme in the digestive vacuole and throughout the hemoglobin ingestion pathway, suggesting an unusual protein targeting route. A peptidomimetic inhibitor selectively blocks the aspartic hemoglobinase, prevents hemoglobin degradation and kills the organism. We conclude that Plasmodium hemoglobin catabolism is a prime target for antimalarial chemotherapy and have identified a lead compound towards this goal.  相似文献   

14.
Genes encoding novel murine cysteine peptidases of the papain family C1A and related genes were cloned and mapped to mouse chromosome 13, colocalizing with the previously assigned cathepsin J gene. We constructed a <460-kb phage artificial chromosome (PAC) contig and characterized a dense cluster comprising eight C1A cysteine peptidase genes, cathepsins J, M, Q, R, -1, -2, -3, and -6; three pseudogenes of cathepsins M, -1, and -2; and four genes encoding putative cysteine peptidase inhibitors related to the proregion of C1A peptidases (trophoblast-specific proteins alpha and beta and cytotoxic T-lymphocyte-associated proteins 2alpha and -beta). Because of sequence homologies of 61.9-72.0% between cathepsin J and the other seven putative cysteine peptidases of the cluster, these peptidases are classified as "cathepsin J-like". The absence of cathepsin J-like peptidases and related genes from the human genome suggests that the cathepsin J cluster arose by partial and complete gene duplication events after the divergence of primate and rodent lineages. The expression of cathepsin J-like peptidases and related genes in the cluster is restricted to the placenta only. Clustered genes are induced at specific time points, and their expression increases toward the end of gestation. The specific expression pattern and high expression level suggest an essential role of cathepsin J-like peptidases and related genes in formation and development of the murine placenta.  相似文献   

15.
Kinetic constants were determined for the interaction of the HIV-2 aspartic proteinase with a synthetic substrate and a number of inhibitors at several pH values. Acetyl-pepstatin was more effective towards HIV-2 proteinase than the renin inhibitor, H-261; this effect is exactly the opposite from that observed previously for the proteinase from the HIV-1 AIDS virus.  相似文献   

16.
Cathepsin D is peptidase belonging to the family of aspartic peptidases. Its mostly described function is intracellular catabolism in lysosomal compartments, other physiological effect include hormone and antigen processing. For almost two decades, there have been an increasing number of data describing additional roles imparted by cathepsin D and its pro-enzyme, resulting in cathepsin D being a specific biomarker of some diseases. These roles in pathological conditions, namely elevated levels in certain tumor tissues, seem to be connected to another, yet not fully understood functionality. However, despite numerous studies, the mechanisms of cathepsin D and its precursor's actions are still not completely understood. From results discussed in this article it might be concluded that cathepsin D in its zymogen status has additional function, which is rather dependent on a "ligand-like" function then on proteolytic activity.  相似文献   

17.
F Cumin  D Nisato  J P Gagnol  P Corvol 《Biochemistry》1987,26(24):7615-7621
The in vitro binding of [3H]SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a Ki of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of [3H]SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the KD was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of [3H]SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, [3H]SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with [3H]SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Schistosoma mansoni is one of the three main causative agents of human schistosomiasis, a major health problem with a vast socio-economic impact. Recent advances in the proteomic analysis of schistosomes have revealed that peptidases are the main virulence factors involved in the pathogenesis of this disease. In this context, evolutionary studies can be applied to identify peptidase families that have been expanded in genomes over time in response to different selection pressures. Using a phylogenomic approach, we searched for expanded endopeptidase families in the S. mansoni predicted proteome with the aim of contributing to the knowledge of such enzymes as potential therapeutic targets. We found three endopeptidase families that comprise leishmanolysins (metallopeptidase M8 family), cercarial elastases (serine peptidase S1 family) and cathepsin D proteins (aspartic peptidase A1 family). Our results suggest that the Schistosoma members of these families originated from successive gene duplication events in the parasite lineage after its diversification from other metazoans. Overall, critical residues are conserved among the duplicated genes/proteins. Furthermore, each protein family displays a distinct evolutionary history. Altogether, this work provides an evolutionary view of three S. mansoni peptidase families, which allows for a deeper understanding of the genomic complexity and lineage-specific adaptations potentially related to the parasitic lifestyle.  相似文献   

19.
Due to the important role that aspartic proteases play in many patho-physiological processes, they have intensively been targeted by modern drug development. However, up to now, only for two family members, renin and HIV protease, approved drugs are available. Inhibitor development, mostly guided by mimicking the natural peptide substrates, resulted in very potent inhibitors for several targets, but the pharmacokinetic properties of these compounds were often not optimal. Herein we report a novel approach for lead structure discovery of non-peptidic aspartic protease inhibitors using easily accessible achiral linear oligoamines as starting point. An initial library comprising 11 inhibitors was developed and screened against six selected aspartic proteases. Several hits could be identified, among them selective as well as rather promiscuous inhibitors. The design concept was confirmed by determination of the crystal structure of two derivatives in complex with the HIV-1 protease, and represents a promising basis for the further inhibitor development.  相似文献   

20.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major pest of potato plants, and its digestive system is a promising target for development of pest control strategies. This work focuses on functional proteomic analysis of the digestive proteolytic enzymes expressed in the CPB gut. We identified a set of peptidases using imaging with specific activity-based probes and activity profiling with selective substrates and inhibitors. The secreted luminal peptidases were classified as: (i) endopeptidases of cathepsin D, cathepsin L, and trypsin types and (ii) exopeptidases with aminopeptidase (cathepsin H), carboxypeptidase (serine carboxypeptidase, prolyl carboxypeptidase), and carboxydipeptidase (cathepsin B) activities. The proteolytic arsenal also includes non-luminal peptidases with prolyl oligopeptidase and metalloaminopeptidase activities. Our results indicate that the CPB gut employs a multienzyme network of peptidases with complementary specificities to efficiently degrade ingested proteins. This proteolytic system functions in both CPB larvae and adults and is controlled mainly by cysteine and aspartic peptidases and supported by serine and metallopeptidases. The component enzymes identified here are potential targets for inhibitors with tailored specificities that could be engineered into potato plants to confer resistance to CPB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号