首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The heat-shock protein 90 (HSP90) from tobacco VBIO cells specifically binds to nitrocellulose that had been coated with polymerized microtubules or tubulin dimers. HSP90 is expressed preferentially during cell division and becomes down-regulated during cell elongation. HSP90 cofractionates with tubulin dimers during affinity chromatography with sepharose coupled to the tubulin-binding drug ethyl N-phenylcarbamate (EPC). Binding of HSP90 to EPC-sepharose depends on the presence of tubulin. Antibodies against tubulin and HSP90 immunoadsorb HSP90 and tubulin, respectively. These results demonstrate that HSP90 behaves as a microtubule-binding protein in vitro.  相似文献   

2.
The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ‐tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral’s effect on microtubules was both dose‐ and time‐dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ‐tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP‐Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral’s effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules.  相似文献   

3.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

4.
5.
6.
We developed a modified immunofluorescence protocol that permitted visualization of microtubules inside the macronucleus of the ciliate Tetrahymena. Although the amitotically dividing macronucleus lacks a spindle, an elaborate system of microtubules is assembled inside the macronucleus and between the macronucleus and the cortex. Microtubules could not be detected inside the interphase macronuclei. The early stage of macronuclear division was associated with the assembly of short macronuclear microtubules that localized randomly. The intramacronuclear microtubules were subsequently organized in a radial manner. During elongation of the macronucleus, the distribution of macronuclear microtubules changed from radial to parallel. During constriction of the macronucleus, dense and tangled macronuclear microtubules were detected at the region of nuclear constriction. In the cytosol, microtubules were linking the macronucleus and cell cortex. During recovery after drug-induced depolymerization, microtubules reassembled at multiple foci inside the macronucleus in close proximity to the chromatin. We propose that these microtubules play roles in chromatin partitioning, macronuclear constriction, and positioning of the macronucleus in relation to the cell cortex.  相似文献   

7.
Summary Methyl jasmonate, a growth-regulating substance that is ubiquitous in the plant kingdom, was found to disrupt cortical microtubules in tobacco cultured cells. It exerted a microtubule-disrupting effect only in cells at the S phase of the cell cycle. Neither microtubules in preprophase bands, spindles and phragmoplasts nor cortical microtubules at stages of the cell cycle other than the S phase were disrupted by methyl jasmonate. Jasmonic acid was as effective as methyl jasmonate in disrupting cortical microtubules.Abbreviations BUdR 5-bromo-2-deoxyuridine - 2,4-D 2,4-dichlorophenoxyacetic acid - DMSO dimethyl sulfoxide - EGTA ethylene glycol bis(2-aminoethyl ether)-tetraacetic acid - FITC fluorescein isothiocyanate - FUdR 5-fluoro-2-deoxyuridine - JA jasmonic acid - JA-Me methyl jasmonate - PBS phosphate-buffered saline - PMSF phenylmethylsulfonyl fluoride  相似文献   

8.
In plant cells, cortical microtubules provide tracks for cellulose-synthesizing enzymes and regulate cell division, growth, and morphogenesis. The role of microtubules in these essential cellular processes depends on the spatial arrangement of the microtubules. Cortical microtubules are reoriented in response to changes in cell growth status and cell shape. Therefore, an understanding of the mechanism that underlies the change in microtubule orientation will provide insight into plant cell growth and morphogenesis. This study demonstrated that AUGMIN subunit8 (AUG8) in Arabidopsis thaliana is a novel microtubule plus-end binding protein that participates in the reorientation of microtubules in hypocotyls when cell elongation slows down. AUG8 bound to the plus ends of microtubules and promoted tubulin polymerization in vitro. In vivo, AUG8 was recruited to the microtubule branch site immediately before nascent microtubules branched out. It specifically associated with the plus ends of growing cortical microtubules and regulated microtubule dynamics, which facilitated microtubule reorientation when microtubules changed their growth trajectory or encountered obstacle microtubules during microtubule reorientation. This study thus reveals a novel mechanism underlying microtubule reorientation that is critical for modulating cell elongation in Arabidopsis.  相似文献   

9.
Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in approximately 6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression. These studies have implications in the optimal use of recombinant AAV vectors in human gene therapy.  相似文献   

10.
In diffusely growing plant cells, cortical microtubules play an important role in regulating the direction of cell expansion. Arabidopsis (Arabidopsis thaliana) spiral2 (spr2) mutant is defective in directional cell elongation and exhibits right-handed helical growth in longitudinally expanding organs such as root, hypocotyl, stem, petiole, and petal. The growth of spr2 roots is more sensitive to microtubule-interacting drugs than is wild-type root growth. The SPR2 gene encodes a plant-specific 94-kD protein containing HEAT-repeat motifs that are implicated in protein-protein interaction. When expressed constitutively, SPR2-green fluorescent protein fusion protein complemented the spr2 mutant phenotype and was localized to cortical microtubules as well as other mitotic microtubule arrays in transgenic plants. Recombinant SPR2 protein directly bound to taxol-stabilized microtubules in vitro. Furthermore, SPR2-specific antibody and mass spectrometry identified a tobacco (Nicotiana tabacum) SPR2 homolog in highly purified microtubule-associated protein fractions from tobacco BY-2 cell cultures. These results suggest that SPR2 is a novel microtubule-associated protein and is required for proper microtubule function involved in anisotropic growth.  相似文献   

11.
In roots of Arabidopsis thaliana, we examined the effects oflow concentrations of microtubule inhibitors on the polarityof growth and on the organization of microtubule arrays. Intact6 d old seedlings were transplanted onto plates containing inhibitors,and sampled 12 h, 24 h and 48 h later. Oryzalin, a compoundthat causes microtubule depolymerization, stimulates the radialexpansion of roots. The amount of radial swelling is linearlyproportional to the logarithm of the oryzalin concentration,from the response threshold, 170 nM, to 1 µM. Cells inthe zone of division were slightly more sensitive to oryzalinthan were cells in the zone of pure elongation. Radial swellingis also stimulated by taxol, a compound that causes microtubulepolymerization. Taxol at 1 µM causes little swelling,but at 10µM causes extensive radial swelling of cellsin the elongation zone, and does not affect cells in the divisionzone. To examine the microtubules in these roots, we used methacrylatesections with immunofluorescence microscopy. At all concentrationsof oryzalin, cortical arrays are disorganized and depleted ofmicrotubules, and the microtubules themselves often appear fragmented.These effects increase in severity with concentration, but areunmistakable at 170 nM. In taxol, cortical arrays appear tobe more intensely stained than those of controls. At 10 µM,many cells in growing regions of the stele have longitudinalmicrotubules, whereas many cells in the cortex appear to havetransversely aligned microtubules. Taxol affects microtubulesin cells of division and elongation zones to the same extent,despite the observed difference in growth. We conclude thatthe precise, spatial pattern of cortical microtubules may notbe primarily responsible for controlling growth anisotropy;and that control over growth anisotropy may differ between dividingand non-dividing cells. (Received December 6, 1993; Accepted June 7, 1994)  相似文献   

12.
A mouse monoclonal antibody (AC88) that was raised against the 88-kDa heat-shock protein of the water mold, Achlya ambisexualis, and that cross-reacts with the 90-kDa mammalian heat-shock protein (hsp90), and an antibody against tubulin were used to localize hsp90 and microtubules, respectively, in the same cultured rat endothelial and PtK1 epithelial cells by indirect immunofluorescence. AC88 and tubulin antibodies labeled the same structures in cells at all stages of the cell cycle, regardless of whether cells were permeabilized before or after fixation. Labeling of cell structures by both AC88 and anti-tubulin antibodies was identically affected by treating cells with colcemid. Double labeling with AC88 and anti-tubulin antibodies in interphase and mitotic cells is consistent with the conclusion that all microtubules are labeled and that no subclass of microtubules is preferentially labeled. Fluorescent labeling by AC88 was prevented by preabsorption of the antibody with purified rat hsp90 but was unaffected by preabsorption with purified 6S tubulin dimer. In contrast to AC88, fluorescent labeling by an anti-tubulin antibody was prevented by preabsorption with tubulin dimer but was unaffected by preabsorption with rat hsp90. Western-blot analysis demonstrated no cross-reactivity of AC88 for tubulin and no cross-reactivity of the anti-tubulin antibody for hsp90. A polyclonal antiserum fraction from a rabbit immunized with the 89-kDa heat-shock protein from chicken also labeled the mitotic apparatus in dividing cells and, somewhat less distinctly, fibrous structures in interphase cells. Labeling by hsp89 anti-serum was prevented by absorption with hsp90. AC88 also labeled microtubules in cultured mouse (L929 and 3T3), rat (endothelium and TRST), hamster (CHO) and primate (BSC, COS-1 and HeLa) cell lines. The demonstration of colocalization of hsp90 with microtubules should provide a valuable clue to eventual understanding of the cellular function of this ubiquitous, conserved and abundant stress-response protein.  相似文献   

13.
Summary In order to study developmental changes in microtubule organization attending the formation of a longitudinally oriented preprophase band, the guard mother cells ofAvena were examined using a new procedure for anti-tubulin immunocytochemistry on large epidermal segments. We found that the interphase band (IMB) of transverse cortical microtubules present in these cells following asymmetric division is replaced after subsidiary cell formation by mesh-like to radial microtubules that extend throughout the cytoplasm. Many of the Mts are also grouped in bundles. Gradually, this intermediate array is succeeded by longitudinal elements of the PPB. Thus, preprophase band formation is accompanied by a 90° shift in Mt orientation, with a radial arrangement serving as an intermediate stage. The micrographs are most consistent with the rearrangement of intact Mts, although changes in Mt assembly are possible as well. The role of the IMB in guard mother cells is also discussed.Abbreviations GMC guard mother cell - IMB interphase microtubule band - Mt microtubule - PPB preprophase band  相似文献   

14.
To investigate molecular mechanisms controlling plant morphogenesis, we examined the morphology of primary roots of Arabidopsis thaliana and the organization of cortical microtubules in response to inhibitors of serine/threonine protein phosphatases and kinases. We found that cantharidin, an inhibitor of types 1 and 2A protein phosphatases, as previously reported for okadaic acid and calyculin A (R.D. Smith, J.E. Wilson, J.C. Walker, T.I. Baskin [1994] Planta 194: 516-524), inhibited elongation and stimulated radial expansion. Of the protein kinase inhibitors tested, chelerythrine, 6-dimethylaminopurine, H-89, K252a, ML-9, and staurosporine all inhibited elongation, but only staurosporine appreciably stimulated radial expansion. To determine the basis for the root swelling, we examined cortical microtubules in semithin sections of material embedded in butyl-methyl-methacrylate. Chelerythrine and 100 nM okadaic acid, which inhibited elongation without causing swelling, did not change the appearance of cortical arrays, but calyculin A, cantharidin, and staurosporine, which caused swelling, disorganized cortical microtubules. The stability of the microtubules in the aberrant arrays was not detectably different from those in control arrays, as judged by similar sensitivity to depolymerization by cold or oryzalin. These results identify protein phosphorylation and dephosphorylation as requirements in one or more steps that organize the cortical array of microtubules.  相似文献   

15.
The organization of microtubule arrays in the plant cell cortex involves interactions with the plasma membrane, presumably through protein bridges. We have used immunochemistry and monoclonal antibody 6G5 against a candidate bridge protein, a 90-kD tubulin binding protein (p90) from tobacco BY-2 membranes, to characterize the protein and isolate the corresponding gene. Screening an Arabidopsis cDNA expression library with the antibody 6G5 produced a partial clone encoding phospholipase D (PLD), and a full-length gene was obtained by sequencing a corresponding expressed sequence tag clone. The predicted protein of 857 amino acids contains the active sites of a phospholipid-metabolizing enzyme and a Ca(2+)-dependent lipid binding domain and is identical to Arabidopsis PLD delta. Two amino acid sequences obtained by Edman degradation of the tobacco p90 are identical to corresponding segments of a PLD sequence from tobacco. Moreover, immunoprecipitation using the antibody 6G5 and tobacco BY-2 protein extracts gave significant PLD activity, and PLD activity of tobacco BY-2 membrane proteins was enriched 6.7-fold by tubulin-affinity chromatography. In a cosedimentation assay, p90 bound and decorated microtubules. In immunofluorescence microscopy of intact tobacco BY-2 cells or lysed protoplasts, p90 colocalized with cortical microtubules, and taxol-induced microtubule bundling was accompanied by corresponding reorganization of p90. Labeling of p90 remained along the plasma membrane when microtubules were depolymerized, although detergent extraction abolished the labeling. Therefore, p90 is a specialized PLD that associates with membranes and microtubules, possibly conveying hormonal and environmental signals to the microtubule cytoskeleton.  相似文献   

16.
Summary Changes in the microtubular cytoskeleton during meiosis and cytokinesis in hybrid moth orchids were studied by indirect immunofluorescence. Lagging chromosomes not incorporated into telophase nuclei after first meiotic division behave as small extra nuclei. Events in the microtubular cycle associated with these micronuclei are similar to and synchronous with those of the principal nuclei. During second meiotic division the micronuclei trigger formation of minispindles which are variously oriented with respect to the two principal spindles. After meiosis, radial systems of microtubules measure cytoplasmic domains around each nucleus in the coenocyte. Cleavage planes are established in regions where opposing radial arrays interact and the cytoplasm cleaved around micronuclei is proportionately smaller than that around the four principal nuclei. These observations clearly demonstrate that nuclei in plant cells are of fundamental importance in microtubule organization and provide strong evidence in support of our recently advanced hypothesis that division planes in simultaneous cytokinesis following meiosis are determined by establishment of cytoplasmic domains via radial systems of nuclear-based microtubules rather than by division sites established before nuclear division.Abbreviations DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PBS phosphate buffered saline - PPB preprophase band of microtubules  相似文献   

17.
The untransformed rat glucocorticoid receptor is assumed to be a hetero-oligomeric complex, containing a non-steroid binding component, the 90K heat-shock protein (HSP 90). Direct measurement of its molecular weight by chemical cross-linking provides new evidence for a trimeric structure with a Mr of ca. 270,000. Resorting to an anti HSP 90 probe (AC 88), we show that the native dimeric HSP 90 possess two accessible epitopes for this monoclonal antibody, while when bound to the steroid-binding subunit, only one epitope remains accessible. These data clearly suggest that the untransformed rat glucocorticoid receptor is an asymmetrical hetero-oligomeric complex.  相似文献   

18.
A cell line derived from the tailfin of the marine teleost yellowtail fish Seriola quinqueradiata was established to examine cellular temperature regulation in an ectothermic animal. Three cytosolic members of the HSP70 family, heat-shock cognate proteins HSC70-1, HSC70-2 and heat-shock protein HSP70, were isolated from cultured yellowtail cells as stress-responsive biomarkers. Expression of hsp70 was heat-inducible, in contrast to the hsc70-1 gene product, which was expressed constitutively. In addition, expression of hsc70-2 was only induced under severe heat-shock conditions. Subcellular fractionation and immunocytochemistry showed localization of HSC70/HSP70 in the lysosomes, indicating that chaperone-mediated autophagy is induced by heat shock. Thus, chaperone-mediated autophagy is assisted by HSC70/HSP70, and heat-inducible expression of the genes encoding these proteins may be responsible for survival and adaptation under heat-shock conditions in fish cells.  相似文献   

19.
H Itoh  Y Tashima 《FEBS letters》1991,289(1):110-112
To understand the physiological functions of the 105-kDa protein which is testis-specific and HSP90 (90-kDa heat-shock protein) related protein, the appearance of it in the testis has been followed during the development of rat. On immunoblotting analysis, the 105-kDa protein did not appear until after the age of five weeks, while HSP90 could be detected at three weeks. In the spermatozoa, the 105-kDa protein was much abundant but not in the LC-540 cells (a cell line from Leydig cell tumor in rat testis) cytosol. This finding has attracted much attention to the relationship between this protein and sperm functions.  相似文献   

20.
Mitotic spindle orientation and plane of cleavage in mammals is a determinant of whether division yields progenitor expansion and/or birth of new neurons during radial glial progenitor cell (RGPC) neurogenesis, but its role earlier in neuroepithelial stem cells is poorly understood. Here we report that Lis1 is essential for precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. Controlled gene deletion of Lis1 in vivo in neuroepithelial stem cells, where cleavage is uniformly vertical and symmetrical, provokes rapid apoptosis of those cells, while radial glial progenitors are less affected. Impaired cortical microtubule capture via loss of cortical dynein causes astral and cortical microtubules to be greatly reduced in Lis1-deficient cells. Increased expression of the LIS/dynein binding partner NDEL1 restores cortical microtubule and dynein localization in Lis1-deficient cells. Thus, control of symmetric division, essential for neuroepithelial stem cell proliferation, is mediated through spindle orientation determined via LIS1/NDEL1/dynein-mediated cortical microtubule capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号