首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Physiological properties of photosynthesis were determined in the marine diatom, Phaeodactylum tricornutum UTEX640, during acclimation from 5% CO2 to air and related to H2CO3 dissociation kinetics and equilibria in artificial seawater. The concentration of dissolved inorganic carbon at half maximum rate of photosynthesis (K0·5[DIC]) value in high CO2‐grown cells was 1009 mmol m ? 3 but was reduced three‐fold by the addition of bovine carbonic anhydrase (CA), whereas in air‐grown cells K0·5[DIC] was 71 mmol m ? 3, irrespective of the presence of CA. The maximum rate of photosynthesis (Pmax) values varied between 300 and 500 μ mol O2 mg Chl ? 1 h ? 1 regardless of growth pCO2. Bicarbonate dehydration kinetics in artificial seawater were re‐examined to evaluate the direct HCO3 ? uptake as a substrate for photosynthesis. The uncatalysed CO2 formation rate in artificial seawater of 31·65°/oo of salinity at pH 8·2 and 25 °C was found to be 0·6 mmol m ? 3 min ? 1 at 100 mmol m ? 3 DIC, which is 53·5 and 7·3 times slower than the rates of photosynthesis exhibited in air‐ and high CO2‐grown cells, respectively. These data indicate that even high CO2‐grown cells of P. tricornutum can take up both CO2 and HCO3 ? as substrates for photosynthesis and HCO3 ? use improves dramatically when the cells are grown in air. Detailed time courses were obtained of changes in affinity for DIC during the acclimation of high CO2‐grown cells to air. The development of high‐affinity photosynthesis started after a 2–5 h lag period, followed by a steady increase over the next 15 h. This acclimation time course is the slowest to be described so far. High CO2‐grown cells were transferred to controlled DIC conditions, at which the concentrations of each DIC species could be defined, and were allowed to acclimate for more than 36 h. The K0·5[DIC] values in acclimated cells appeared to be correlated only with [CO2(aq)] in the medium but not to HCO3 ? , CO32 ? , total [DIC] or the pH of the medium and indicate that the critical signal regulating the affinity of cells for DIC in the marine diatom, P. tricornutum, is [CO2(aq)] in the medium.  相似文献   

3.
Rice carbon balance under elevated CO2   总被引:1,自引:1,他引:1  
  相似文献   

4.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

5.
Refixation of xylem sap CO2 in Populus deltoides   总被引:1,自引:0,他引:1  
Vascular plants have respiring tissues which are perfused by the transpiration stream, allowing solubilization of respiratory CO2 in the xylem sap. The transpiration stream could provide a conduit for the internal delivery of respiratory CO2 to leaves. Trees have large amounts of respiring tissues in the root systems and stems, and may have elevated levels of CO2 in the xylem sap which could be delivered to and refixed by the leaves. Xylem sap from the shoots of three Populus deltoides trees had mean dissolved inorganic carbon concentrations (CO2+H2CO3+HCO?3) ranging from 0. 5 to 0. 9 mM. When excised leaves were allowed to transpire 1 mM[14C]NaHCO3, 99. 6% of the label was fixed in the light. Seventy-seven percent of the label was fixed in major veins and the remainder was fixed in the minor veins. Autoradiography confirmed that label was confined to the vasculature. In the dark, approximately 80% of the transpired label escaped the leaf, the remainder was fixed in the major veins, slightly elevating dark respiration measurements. This indicates that the vascular tissue in P. deltoides leaves is supplied with a carbon source distinct from the atmospheric source fixed by interveinal lamina. However, the contribution of CO2 delivered to the leaves in the transpiration stream and fixed in the veins was only 0. 5% of atmospheric CO2 uptake. In the light 90% of the label was found in sugar, starch and protein, a pattern similar to that found for atmospheric uptake of[14C]CO2. Compared with leaves labelled in the light, leaves labelled in the dark had more label in organic acid, amino acid and protein and less label in sugar and starch. After a 5-s pulse the majority of the label fed to petioles in both the light and the dark was found in malate. The majority of the label was found in malate at 120 s in the dark; only 2% of the label was found in phosphorylated compounds at 120 s. The proportion of label found in phosphorylated compounds increased from 17% at 5 s to 80% at 120 s in the light. This suggests that CO2 delivered to leaves in the light via the transpiration stream is fixed in the veins, a small portion through dark fixation into malate, the remainder by C-3 photosynthesis.  相似文献   

6.
7.
8.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

9.
The input and fate of new C in two forest soils under elevated CO2   总被引:2,自引:0,他引:2  
The aim of this study was to estimate (i) the influence of different soil types on the net input of new C into soils under CO2 enrichment and (ii) the stability and fate of these new C inputs in soils. We exposed young beech–spruce model ecosystems on an acidic loam and calcareous sand for 4 years to elevated CO2. The added CO2 was depleted in 13C, allowing to trace new C inputs in the plant–soil system. We measured CO2‐derived new C in soil C pools fractionated into particle sizes and monitored respiration as well as leaching of this new C during incubation for 1 year. Soil type played a crucial role in the partitioning of C. The net input of new C into soils under elevated CO2 was about 75% greater in the acidic loam than in the calcareous sand, despite a 100% and a 45% greater above‐ and below‐ground biomass on the calcareous sand. This was most likely caused by a higher turnover of C in the calcareous sand as indicated by 30% higher losses of new C from the calcareous sand than from the acidic loam during incubation. Therefore, soil properties determining stabilization of soil C were apparently more important for the accumulation of C in soils than tree productivity. Soil fractionation revealed that about 60% of the CO2‐derived new soil C was incorporated into sand fractions. Low natural 13C abundance and wide C/N ratios show that sand fractions comprise little decomposed organic matter. Consistently, incubation indicated that new soil C was preferentially respired as CO2. During the first month, evolved CO2 consisted to 40–55% of new C, whereas the fraction of new C in bulk soil C was 15–23% only. Leaching of DOC accounted for 8–23% of the total losses of new soil C. The overall effects of CO2 enrichment on soil C were small in both soils, although tree growth increased significantly on the calcareous sand. Our results suggest that the potential of soils for C sequestration is limited, because only a small fraction of new C inputs into soils will become long‐term soil C.  相似文献   

10.
We measured soil CO2 flux over 19 sampling periods that spanned two growing seasons in a grassland Free Air Carbon dioxide Enrichment (FACE) experiment that factorially manipulated three major anthropogenic global changes: atmospheric carbon dioxide (CO2) concentration, nitrogen (N) supply, and plant species richness. On average, over two growing seasons, elevated atmospheric CO2 and N fertilization increased soil CO2 flux by 0.57 µmol m?2 s?1 (13% increase) and 0.37 µmol m?2 s?1 (8% increase) above average control soil CO2 flux, respectively. Decreases in planted diversity from 16 to 9, 4 and 1 species decreased soil CO2 flux by 0.23, 0.41 and 1.09 µmol m?2 s?1 (5%, 8% and 21% decreases), respectively. There were no statistically significant pairwise interactions among the three treatments. During 19 sampling periods that spanned two growing seasons, elevated atmospheric CO2 increased soil CO2 flux most when soil moisture was low and soils were warm. Effects on soil CO2 flux due to fertilization with N and decreases in diversity were greatest at the times of the year when soils were warm, although there were no significant correlations between these effects and soil moisture. Of the treatments, only the N and diversity treatments were correlated over time; neither were correlated with the CO2 effect. Models of soil CO2 flux will need to incorporate ecosystem CO2 and N availability, as well as ecosystem plant diversity, and incorporate different environmental factors when determining the magnitude of the CO2, N and diversity effects on soil CO2 flux.  相似文献   

11.
The effects of elevated CO2 on tropical ecosystems were studied in the artificial rain forest mesocosm at Biosphere 2, a large-scale and ecologically diverse experimental facility located in Oracle, Arizona. The ecosystem responses were assessed by comparing the whole-system net gas exchange (NEE) upon changing CO2 levels from 900 to 450 ppmV. The day-NEE was significantly higher in the elevated CO2 treatment. In both experiments, the NEE rates were similar to values observed in natural analogue systems. Variations in night-NEE, reflecting both soil CO2 efflux and plants respiration, covaried with temperature but showed no clear correlation with atmospheric CO2 levels. After correcting for changes in CO2 efflux we show that the rain forest net photosynthesis increased in response to increasing atmospheric CO2. The photosynthetic enhancement was expressed in higher quantum yields, maximum assimilation rates and radiation use efficiency. The results suggest that photosynthesis in large tropical trees is CO2 sensitive, at least following short exposures of days to weeks. Taken at face value, the data suggest that as a result of anthropogenic emissions of CO2, tropical rain forests may shift out of steady state, and become a carbon sink at least for short periods. However, a better understanding of the unique conditions and phenomena in Biosphere 2 is necessary before these results are broadly useful.  相似文献   

12.
A possible benefit of the presence of the epiphytic bryozoan Electra pilosa (L.) for the red macroalga Gelidium sesquipedale (Clem.) Thuret et Bornet is described. Absorption spectra and photosynthetic parameters of O2 evolution vs. irradiance curves were determined for both epiphytized and nonepiphytized thalli. The absorptance of G. sesquipedale thalli for PAR was not modified by the presence of the epiphyte. Gross photosynthetic rates at saturating light were approximately doubled in epiphytized thalli. Photosynthesis by G. sesquipedale was enhanced when CO2 concentration was increased in the medium by a decrease in pH. On the other hand, an increase in pH from 8.1 to 8.7 produced a significant reduction of the O2 evolution rates indicating that G. sesquipedale has a very low capacity to use HCO3. The decrease in photosynthesis at high pH was higher in nonepiphytized thalli than in epiphytized ones, suggesting that the amount of available CO2 is higher in the presence of E. pilosa. This positive effect was attributed to the CO2 released by respiration of the epiphyte.  相似文献   

13.
14.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

15.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   

16.
In the present open‐top chamber experiment, two silver birch clones (Betula pendula Roth, clone 4 and clone 80) were exposed to elevated levels of carbon dioxide (CO2) and ozone (O3), singly and in combination, and soil CO2 efflux was measured 14 times during three consecutive growing seasons (1999–2001). In the beginning of the experiment, all experimental trees were 7 years old and during the experiment the trees were growing in sandy field soil and fertilized regularly. In general, elevated O3 caused soil CO2 efflux stimulation during most measurement days and this stimulation enhanced towards the end of the experiment. The overall soil respiration response to CO2 was dependent on the genotype, as the soil CO2 efflux below clone 80 trees was enhanced and below clone 4 trees was decreased under elevated CO2 treatments. Like the O3 impact, this clonal difference in soil respiration response to CO2 increased as the experiment progressed. Although the O3 impact did not differ significantly between clones, a significant time × clone × CO2× O3 interaction revealed that the O3‐induced stimulation of soil respiration was counteracted by elevated CO2 in clone 4 on most measurement days, whereas in clone 80, the effect of elevated CO2 and O3 in combination was almost constantly additive during the 3‐year experiment. Altogether, the root or above‐ground biomass results were only partly parallel with the observed soil CO2 efflux responses. In conclusion, our data show that O3 impacts may appear first in the below‐ground processes and that relatively long‐term O3 exposure had a cumulative effect on soil CO2 efflux. Although the soil respiration response to elevated CO2 depended on the tree genotype as a result of which the O3 stress response might vary considerably within a single tree species under elevated CO2, the present experiment nonetheless indicates that O3 stress is a significant factor affecting the carbon cycling in northern forest ecosystems.  相似文献   

17.
Terrestrial higher plants exchange large amounts of CO2 with the atmosphere each year; c. 15% of the atmospheric pool of C is assimilated in terrestrial-plant photosynthesis each year, with an about equal amount returned to the atmosphere as CO2 in plant respiration and the decomposition of soil organic matter and plant litter. Any global change in plant C metabolism can potentially affect atmospheric CO2 content during the course of years to decades. In particular, plant responses to the presently increasing atmospheric CO2 concentration might influence the rate of atmospheric CO2 increase through various biotic feedbacks. Climatic changes caused by increasing atmospheric CO2 concentration may modulate plant and ecosystem responses to CO2 concentration. Climatic changes and increases in pollution associated with increasing atmospheric CO2 concentration may be as significant to plant and ecosystem C balance as CO2 concentration itself. Moreover, human activities such as deforestation and livestock grazing can have impacts on the C balance and structure of individual terrestrial ecosystems that far outweigh effects of increasing CO2 concentration and climatic change. In short-term experiments, which in this case means on the order of 10 years or less, elevated atmospheric CO2 concentration affects terrestrial higher plants in several ways. Elevated CO2 can stimulate photosynthesis, but plants may acclimate and (or) adapt to a change in atmospheric CO2 concentration. Acclimation and adaptation of photosynthesis to increasing CO2 concentration is unlikely to be complete, however. Plant water use efficiency is positively related to CO2 concentration, implying the potential for more plant growth per unit of precipitation or soil moisture with increasing atmospheric CO2 concentration. Plant respiration may be inhibited by elevated CO2 concentration, and although a naive C balance perspective would count this as a benefit to a plant, because respiration is essential for plant growth and health, an inhibition of respiration can be detrimental. The net effect on terrestrial plants of elevated atmospheric CO2 concentration is generally an increase in growth and C accumulation in phytomass. Published estimations, and speculations about, the magnitude of global terrestrial-plant growth responses to increasing atmospheric CO2 concentration range from negligible to fantastic. Well-reasoned analyses point to moderate global plant responses to CO2 concentration. Transfer of C from plants to soils is likely to increase with elevated CO2 concentrations because of greater plant growth, but quantitative effects of those increased inputs to soils on soil C pool sizes are unknown. Whether increases in leaf-level photosynthesis and short-term plant growth stimulations caused by elevated atmospheric CO2 concentration will have, by themselves, significant long-term (tens to hundreds of years) effects on ecosystem C storage and atmospheric CO2 concentration is a matter for speculation, not firm conclusion. Long-term field studies of plant responses to elevated atmospheric CO2 are needed. These will be expensive, difficult, and by definition, results will not be forthcoming for at least decades. Analyses of plants and ecosystems surrounding natural geological CO2 degassing vents may provide the best surrogates for long-term controlled experiments, and therefore the most relevant information pertaining to long-term terrestrial-plant responses to elevated CO2 concentration, but pollutants associated with the vents are a concern in some cases, and quantitative knowledge of the history of atmospheric CO2 concentrations near vents is limited. On the whole, terrestrial higher-plant responses to increasing atmospheric CO2 concentration probably act as negative feedbacks on atmospheric CO2 concentration increases, but they cannot by themselves stop the fossil-fuel-oxidation-driven increase in atmospheric CO2 concentration. And, in the very long-term, atmospheric CO2 concentration is controlled by atmosphere-ocean C equilibrium rather than by terrestrial plant and ecosystem responses to atmospheric CO2 concentration.  相似文献   

18.
19.
Hurricane disturbances have profound impacts on ecosystem structure and function, yet their effects on ecosystem CO2 exchange have not been reported. In September 2004, our research site on a fire‐regenerated scrub‐oak ecosystem in central Florida was struck by Hurricane Frances with sustained winds of 113 km h−1 and wind gusts as high as 152 km h−1. We quantified the hurricane damage on this ecosystem resulting from defoliation: we measured net ecosystem CO2 exchange, the damage and recovery of leaf area, and determined whether growth in elevated carbon dioxide concentration in the atmosphere (Ca) altered this disturbance. The hurricane decreased leaf area index (LAI) by 21%, which was equal to 60% of seasonal variation in canopy growth during the previous 3 years, but stem damage was negligible. The reduction in LAI led to a 22% decline in gross primary production (GPP) and a 25% decline in ecosystem respiration (Re). The compensatory declines in GPP and Re resulted in no significant change in net ecosystem production (NEP). Refoliation began within a month after the hurricane, although this period was out of phase with the regular foliation period, and recovered 20% of the defoliation loss within 2.5 months. Full recovery of LAI, ecosystem CO2 assimilation, and ecosystem respiration did not occur until the next growing season. Plants exposed to elevated Ca did not sustain greater damage, nor did they recover faster than plants grown under ambient Ca. Thus, our results indicate that hurricanes capable of causing significant defoliation with negligible damage to stems have negligible effects on NEP under current or future CO2‐enriched environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号