首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.

Background

Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR) regulates the mucus cell metaplasia in vitro and in vivo.

Methodology/Findings

Metaplasia in primary human small airway epithelial cells (SAEC) was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS)-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE)-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE.

Conclusions

The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors such as fidarestat could be developed as therapeutic agents to prevent goblet cell metaplasia in asthma and related pathologies.  相似文献   

2.
We studied the localization of carbonyl reductase (E.C. 1.1.1.184) in guinea pig and mouse lung by enzyme histochemistry and immunohistochemistry, using antibodies against the guinea pig lung enzyme which crossreacted with the lung enzymes of both animals. Carbonyl reductase activity was detectable in the bronchiolar epithelial cells of small airways and in alveolar cells. In the immunohistochemical staining for carbonyl reductase, the reaction was strongest in the non-ciliated bronchiolar cells (Clara cells) and was weak in the ciliated cells and type II alveolar pneumocytes. Injection of a single dose of naphthalene led to significant impairment of carbonyl reductase activity and of microsomal mixed-function oxidase activities in mouse lung, with a marked decrease in both activity and immunoreactive staining in the bronchiolar epithelial cells. The results indicate that carbonyl reductase is localized primarily in the Clara cells, which are known to be sites of pulmonary drug metabolism.  相似文献   

3.
4.
Summary The tracheal epithelium of the mouse is a single layer of columnar cells resting on a basement membrane. Many of the cell types resemble those of other species. However, goblet cells are rare and ciliated cells occur only in scattered patches. Submucosal glands are absent from all but the highest reaches of the airway.The major proportion of the epithelial cells are non-ciliated. These usually project into the lumen of the trachea. Large amounts of smooth endoplasmic reticulum and many secretory vesicles occur within the cytoplasm. Secretory activity of these cells may be either apocrine or merocrine and these cells may transform into other cell types.It is suggested that these non-ciliated cells are Clara cells and that the mouse tracheal epithelium may make a useful model for the study of this type of cell.  相似文献   

5.
Kim JY  Kim DY  Lee YS  Lee BK  Lee KH  Ro JY 《Molecules and cells》2006,22(1):104-112
We previously reported that DA-9601, ethanol herbal extract of Artemisia asiatica, inhibited histamine and leukotriene releases in guinea pig lung mast cells activated with specific antigen/antibody reaction. This study aimed to evaluate the inhibitory effect of DA-9601 on the OVA-induced airway inflammation in allergic asthma mouse model. BALB/c mice were sensitized and challenged with OVA. DA-9601 was administered orally 1 h before every local OVA-challenge. OVA-specific serum IgE was measured by ELISA, recruitment of inflammatory cells in BAL fluids and lung tissues by Diff-Quik and H&E staining, respectively, the expressions of CD40, CD40L and VCAM-1 by immunohistochemistry, goblet cell hyperplasia by PAS staining, activities of MMPs by gelatin zymography, expressions of mRNA and proteins of cytokines by RT-PCR and ELISA, activities of MAP kinases by western blot, and activity of NF-KappaB by EMSA. DA-9601 reduced IgE level, recruitment of inflammatory cells into the BAL fluid and lung tissues, expressions of CD40, CD40L and VCAM-1 molecules, goblet cell hyperplasia, MMPs activity, expressions of mRNA and productions of various cytokines, activities of MAP kinases and NK-KappaB increased from OVA-challenged mice. These data suggest that DA-9601 may be developed as a clinical therapeutic agent in allergic diseases due to suppressing the airway allergic inflammation via regulation of various cellular molecules expressed by MAP kinases/NF-KappaB pathway.  相似文献   

6.
Summary The distribution of oxytocin and vasopressin in the adrenals of rat, cow, hamster and guinea pig has been studied by use of immunohistochemical techniques. In all the species studied the adrenal cortex contained both peptides; the staining in the zona glomerulosa being more intense than that in zona fasciculata or zona reticularis. The medulla, however, showed considerable species variation. In the cow, both peptides appear to be present in the adrenergic and noradrenergic cells, though staining was particularly prominent in cortical islands interspersed within the medullary tissue. In the rat, groups of medullary cells positive for both peptides were found, though it was not possible to associate these groups with particular chromaffin cell types. In the hamster oxytocin was present only in adrenaline-containing cells, whereas vasopressin was present in all medullary cells. The guinea pig medulla, which contains only adrenaline-secreting cells, was positive for both peptides. The possibilities that vasopressin and oxytocin have an autocrine or paracrine role in functioning of the adrenal gland is discussed.  相似文献   

7.
Polyclonal antibodies (PCAB) to smooth muscle myosin (SMM), monoclonal antibodies (MCAB) to cytokeratin 8 (clon HI, IgGI) and H4 (IgM), as well as PCAB to carbonic anhydrase III were used for identification of the cell types in the vas deferens cell culture of guinea pig. Smooth muscle cells (SMC) are identified by intensive staining of PCAB to SMM. Fibroblast-like cells (FBL) are determined by the presence of the filament finest network, apparently responding to the myosin non-muscular forms, which are present in PCAB to SMM. The epithelial cells are stained by MCAB to cytokeratins. PCAB to carbonic anhydrase III interact with all three cell types. In the majority of SMC the enzyme is detected as solitary stripes, though there are diffuse ones across the whole cytoplasms, the nucleus remains clearly visible. Carbonic anhydrase III in epithelial cells is detected only in nucleoli and along nucleus membrane while in FBL--in nucleoli and cytoplasm as focal granulation. PCAB to carbonic anhydrase III may serve as a universal marker for identification of cell type in the guinea pig vas deferens cell culture.  相似文献   

8.
Normal and neoplastic human breast tissue as well as lactating and nonlactating rat mammary glands and 7,12-dimethylbenz(alpha)-anthracene-induced mammary adenocarcinomas of rat, were examined by indirect immunofluorescence microscopy using guinea pig antibodies to human and bovine epidermal prekeratin and to cytokeratin polypeptide D from mouse hepatocytes. In normal mammary glands of both species, lactating rats included, the antibodies raised against human and bovine epidermal prekeratins strongly stained ductal and myoepithelial cells, whereas antibodies to hepatic cytokeratin D revealed, in addition, fibrillar staining in cells of the alveolus-like terminal lobular units and in milk secreting cells of the rat. The presence of some finely dispersed intermediate-sized filaments of the cytokeratin type in lactating alveolar cells of rat mammary gland was also demonstrated by electron microscopy. In human intraductal mammary carcinomas the antibodies to epidermal prekeratins showed staining in myoepithelial cells and intralumenal papillary protrusions of the tumor, whereas the antibodies to hepatic cytokeratin D presented an almost complementary pattern in that they showed strongest staining in the more basally located layers of tumor cells. Intraductal adenocarcinomas of rats showed strong staining with all keratin antibodies examined. In contrast to previous studies using exclusively antisera raised against epidermal prekeratin, out results show that all types of neoplastic and non-neoplastic epithelial cells of mammary gland of both species contain-at least some-filaments of the cytokeratin type identifiable by immunologic reaction, if antibodies are used that recognize a broad range of epidermal and nonepidermal cytokeratins. Consequently, such broad range antibodies to keratin-like proteins provide adequate tools to identify and characterize neoplastic and non-neoplastic epithelial cells and to eliminate false negative immunocytochemical findings in tumor diagnosis. In addition, our observation that in the same human carcinoma two cell types can be distinguished by their reaction with two different antibodies to cytokeratins from epidermis and liver, respectively, indicates that the cells of a given carcinoma can differ in their cytoskeletal composition, thus presenting further criteria for diagnostic differentiation.  相似文献   

9.
Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecutive days. The number of goblet cells in each trachea was determined with Alcian blue-periodic acid-Schiff staining. Differential cell counts and PAF levels in bronchoalveolar lavage fluid were also evaluated. Cigarette smoke exposure significantly increased the number of goblet cells. Eosinophils, neutrophils, and PAF levels in bronchoalveolar lavage fluid were also significantly increased after cigarette smoke. Treatment with a specific PAF receptor antagonist, E-6123, significantly attenuated the increases in the number of airway goblet cells, eosinophils, and neutrophils observed after cigarette smoke exposure. These results suggest that endogenous PAF may play a key role in goblet cell metaplasia induced by cigarette smoke and that potential roles exist for inhibitors of PAF receptor in the treatment of hypersecretory airway diseases.  相似文献   

10.
By means of the immunofluorescent method using rabbit serum that contains natural antibodies against the basal cell antigen of epidermis, the distribution of the antigen has been demonstrated in cells of the basal layer of all types of the stratified epithelium. The reaction is also noted in cytoplasm of the epithelial cells in the thymus and the tracheal mucous membrane. This demonstrates their histogenic affinity to stratified epithelii. The antigen studied is not species-specific, since it is revealed in the stratified epithelium of all species examined (human being, mouse, rat, guinea pig, rabbit). It is possible to use the basal cell antigen as a marker for immunomorphological reveal of epithelial cells in the thymus in the process of its physiological and pathological involution.  相似文献   

11.
We compared the intermediate filament expression of the various cell types in the fully differentiated neural retina from rat, mouse, rabbit, guinea pig, cow, pig, and cat. Many cell types had an intermediate filament complement conserved across species boundaries, such as Müller cells and retinal ganglion cells. In some species (rabbit, guinea pig, and cow), however, we were unable to visualize GFA (glial fibrillary acidic)-positive retinal astrocytes, although such profiles were clearly visible in the remainder. Horizontal cell staining proved to be extremely species-variable. In rat and mouse the processes of these cells were identically displayed with antibodies to vimentin and all three neurofilament triplet proteins. In cow they decorated with antibodies to vimentin and antibodies to the two lower molecular weight neurofilament proteins alone, whereas in pig, rabbit and guinea pig all three neurofilament proteins but not vimentin were present. Finally cat horizontal cells stained for all three neurofilament proteins, some finer processes being additionally stainable with vimentin. A further surprise was the visualization of profiles positive only for the two lower molecular weight neurofilament proteins in the inner nuclear layer of both rabbit and guinea pig retina but not the other species. The implications of these results will be discussed.  相似文献   

12.
To identify specific lung cells possessing functional beta-adrenergic receptors, we developed an immunoperoxidase-staining procedure capable of in situ localization of cells responding to beta-agonist stimulation with a rise in adenosine 3',5'-cyclic monophosphate (cAMP). Isoproterenol was instilled into the airways of excised intact guinea pig lungs for 5 min and resulted in a six to eightfold rise in cAMP. Immediately thereafter, the lungs were washed in and fixed with 10% buffered Formalin. Sections were then stained using immunoperoxidase techniques and monoclonal antibodies directed against cAMP. We found that isoproterenol-stimulated lungs had widespread increased staining for immunoreactive cAMP. The specific cells consistently demonstrating marked increases in staining were airway epithelial cells, airway smooth muscle cells, alveolar and parenchymal macrophages, and alveolar lining cells, including both type I and type II cells, and capillary endothelial cells. Of all tissues, the airway epithelium was the most intensely stained area for beta-agonist-induced immunoreactive cAMP. The techniques employed herein should make possible the in situ localization of cells responding to any stimuli capable of increasing cAMP, thereby allowing the specific identification of cells possessing functional adenylate cyclase-linked receptors.  相似文献   

13.
Previous studies of the intrapulmonary conducting airways of sheep and rabbit have demonstrated marked diversity in the epithelial populations lining them. Because studies of trachea and centriacinar regions of macaque monkeys suggested that primates may be even more diverse, the present study was designed to characterize the epithelial population throughout the airway tree of one primate species, the rhesus monkey. Trachea and intrapulmonary airways of the right cranial and middle lobes of glutaraldehyde/paraformaldehyde-infused lungs of five adult rhesus monkeys were microdissected following the axial pathway. Each branch was assigned a binary number indicating its specific location within the tree. The trachea and six generations of intrapulmonary airway from the right cranial lobe were evaluated for ultrastructure and quantitative histology as were those of the right middle lobe for quantitative carbohydrate histochemistry. Four cell types were identified throughout the tree: ciliated, mucous goblet, small mucous granule, and basal. The tallest epithelium lined the trachea; the shortest, the respiratory bronchiole. The most cells per unit length of basement membrane were in proximal intrapulmonary bronchi; the least, in the respiratory bronchiole. The nonciliated bronchiolar epithelial or Clara cell was restricted to respiratory bronchioles. Sulfomucins were present in the vast majority of surface goblet cells in the trachea and proximal bronchi. In proximal bronchi, neutral glycoconjugates predominated in glands and acidic glycoconjugates in surface epithelium. In terminal and respiratory bronchioles the ratio of acidic glycoconjugate to neutral glycoconjugate equaled that in proximal bronchi, although glands were not present. Sulfomucins were minimal in terminal airways. We conclude that the characteristics of the epithelial lining of the mammalian tracheobronchial airway tree are very species-specific. The lining of the rhesus monkey does not have the diversity in cell types in different airway generations observed in sheep and rabbit. Also, the populations lining these airways in the rhesus are very different from either the sheep or rabbit in number, proportions of different cell types, glycoconjugate content, and distribution of specific cell types.  相似文献   

14.
Goblet cell metaplasia and mucus hypersecretion are important features in the pathogenesis of asthma. The cytokine IL-4 has been shown to play a role in animal models of asthma, where it induces Th2 lymphocyte differentiation and B lymphocyte IgE class switch. IL-4 has also been implicated in the differentiation of goblet cells via effects on lymphocytes and eosinophils. In this study we hypothesized that IL-4 induces airway epithelial cell mucin gene expression and mucous glycoconjugate production by direct action on these cells. In vitro, cultured airway epithelial cells (NCI-H292) expressed IL-4R constitutively, and IL-4 (10 ng/ml) induced MUC2 gene expression and mucous glycoconjugate production. In vivo, mouse airway epithelial cells expressed IL-4R constitutively, and IL-4 (250 ng) increased MUC5 gene expression and Alcian blue/periodic acid-Schiff-positive staining at 24 h; IL-4 did not increase inflammatory cell numbers in airway tissue or in bronchoalveolar lavage. TNF-alpha and IL-1beta levels in bronchoalveolar lavage were not increased in response to IL-4 instillation. These results indicate that airway epithelial cells express IL-4R constitutively and that IL-4 directly induces the differentiation of epithelium into mucous glycoconjugate-containing goblet cells.  相似文献   

15.
16.
In addition to a direct proinflammatory role, IL-13 has been demonstrated to induce a goblet cell metaplastic phenotype in the airway epithelium in vivo. We have studied the direct effects of IL-13 (and IL-4) on well-differentiated, air-liquid interface cultures of human bronchial epithelial cells (HBEs) and provide a quantitative assessment of the development of a mucus hypersecretory phenotype induced by these cytokines. Using Alcian blue staining of goblet cells and immunohistochemical detection of MUC5AC, we found that IL-13 (and IL-4) induced increases in the goblet cell density (GCD) of the HBE cultures. The effects of these cytokines were critically dependent on concentration: 1 ng/ml routinely induced a 5- to 10-fold increase in GCD that was associated with a hypersecretory ion transport phenotype. Paradoxically, 10 ng/ml of either cytokine induced a profound reduction in GCD. Removal of EGF from the culture media or treatment of the cells with AG-1478 [a potent inhibitor of EGF receptor tyrosine kinase (EGFR-TK)] demonstrated that the EGFR-TK pathway was key to the regulation of the basal GCD but that it was not involved in the IL-13-driven increase. The IL-13-driven increase in GCD was, however, sensitive to inhibition of MEK (PD-98059, U-0126), p38 MAPK (SB-202190), and phosphatidylinositol (PtdIns) 3-kinase (LY-294002). These data support the concept that IL-13 is in part able to induce a mucus hypersecretory phenotype through a direct interaction with the airway epithelium and that MAP kinase and PtdIns 3-kinase signaling pathways are involved.  相似文献   

17.
18.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

19.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

20.
Mast cell heterogeneity has been described on the basis of differential staining reactions, light microscopic morphology, anatomic location, degranulation after polyamines, biochemical contents, growth requirements, and reactions to lymphokines. We have demonstrated typical "connective-tissue mast cells" by using anatomic criteria, histological staining reactions, electron microscopy, and reaction to compound 48/80 in the guinea pig conjunctiva, eyelid skin, and ileum. A second, much larger population of cells in the ileal mucosa and the conjunctiva, and rarely in the eyelid skin stained reddish-blue with acid toluidine blue in tissue fixed in ethanol-acetate-lead subacetate (BLA) and with alkaline Giemsa in formaldehyde-fixed tissue, did not stain with ethanolic or acid toluidine blue in formaldehyde-fixed tissue or with alkaline Giemsa in BLA-fixed tissue, and did not degranulate after 48/80 treatment. These are features of the rat intestinal "mucosal mast cells"; however, ultrastructural and light microscopic studies with the orcein Giemsa stain demonstrated these cells in the guinea pig to be eosinophils. Tissue culture, biochemical, and immunological studies indicate the existence of a second type of mast cell (bone-marrow-derived mast cell), ultrastructurally almost indistinguishable from the connective tissue mast cell. Our studies demonstrate only one mast cell type in the guinea pig and support the contention that other forms of mast cells are immature forms or variants of the connective-tissue mast cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号