首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Present groupings of Caridea are notoriously unsatisfactory at the superfamily level. Principles of phylogenetic systematics are used to reconstruct 14 monophyletic subgroups of Caridea, based on 19 synaomorphies of adults. The following sequenced phylogenetic classification is provided (main diagnostic character for each superfamily within brackets): 1. Atyoidea (distal lash of Mxp, reduced); Oplophoridae; Atyidae; Pasiphaidae; Agostocarididae; Alvinocarididae; Bresiliidae; Psalidopodidae; Disciadidae; 2. Stylodactyloidea (mandibular palp with 2 segments or absent); Stylodactylidea; Campylonotidae; 3. Eugonatonotoidea (abdominal somite III with dorsal carina bifurcate); Eugonatonotidae; 4. Palaemonoidea (basal segment of antennular peduncle with distolateral tooth); Rhynchocinetidae; Palaemonidae; 5. Nematocarcinoidea (ventral lobe of scaphognathite narrowly triangular); Nematocarcinidae; 6. Pandaloidea (P1 with chela microscoic or absent); Pandalidae; “Plesionikidae”; Heterocarpidae; Heterocarpoididae; Dorodoteidae; Thalassocarididae; Physetocarididae; 7. Crangonoidea (incisor process of mandible absent); Barbouriidae; Lysmatidae; Merguiidae, fam. n.; Processidae; Glyphocrangonidae; Crangonidae; 8. Alpheoidea (carpus of P2 with less than 17 segments); Merhippolytidae, fam. n.; Nauticarididae; Alopidae; Bythocarididae; Thoridae; Hippolytidae; Pterocarididae, fam. n.; Ogyrididae; Alpheidae. The monotypic hippolytid taxon Thorellinae, subfam. n., has been formally diagnosed. A survey of the lower Caridea has furnished 276 enera and 2418 species and subspecies. The new superfamily system is simpler, genealogically informative and more precisely diagnosed than previous schemes. These have failed as general reference systems because they were based on the wrong premises that similarities indicate phylogenetic relationships or can be used to construct a single acceptable hierarchy.  相似文献   

2.
The Hippolytidae is the fourth largest family within the Caridea, currently containing over 330 described species in 37 genera, and the classification of this family has been rather controversial. In this study, sequences of two nuclear protein‐coding genes, enolase and sodium‐potassium ATPase α‐subunit, and the mitochondrial 16S rRNA gene (totalling 1405 bp) from 29 hippolytid species in 20 genera plus 17 species from eight other caridean families were used to examine the phylogenetic status of Hippolytidae sensu lato. Our results clearly reject the monophyly of Hippolytidae and support the recognition of the Lysmatidae Dana, 1852, Thoridae Kingsley, 1879, Bythocarididae Christoffersen 1987 and Merguiidae Christoffersen 1990 .  相似文献   

3.
4.
The Rhynchocinetidae (‘hinge‐beak’ shrimps) is a family of marine caridean decapods with considerable variation in sexual dimorphism, male weaponry, mating tactics, and sexual systems. Thus, this group is an excellent model with which to analyse the evolution of these important characteristics, which are of interest not only in shrimps specifically but also in animal taxa in general. Yet, there exists no phylogenetic hypothesis, either molecular or morphological, for this taxon against which to test either the evolution of behavioural traits within the Rhynchocinetidae or its genealogical relationships with other caridean taxa. In this study, we tested (1) hypotheses on the phylogenetic relationships of rhynchocinetid shrimps, and (2) the efficacy of different (one‐, two‐, and three‐phase) methods to generate a reliable phylogeny. Total genomic DNA was extracted from tissue samples taken from 17 species of Rhynchocinetidae and five other species currently or previously assigned to the same superfamily (Nematocarcinoidea); six species from other superfamilies were used as outgroups. Sequences from two nuclear genes (H3 and Enolase) and one mitochondrial gene (12S) were used to construct phylogenies. One‐phase phylogenetic analyses (SATé‐II) and classical two‐ and three‐phase phylogenetic analyses were employed, using both maximum likelihood and Bayesian inference methods. Both a two‐gene data set (H3 and Enolase) and a three‐gene data set (H3, Enolase, 12S) were utilized to explore the relationships amongst the targeted species. These analyses showed that the superfamily Nematocarcinoidea, as currently accepted, is polyphyletic. Furthermore, the two major clades recognized by the SATé‐II analysis are clearly concordant with the genera Rhynchocinetes and Cinetorhynchus, which are currently recognized in the morphological‐based classification (implicit phylogeny) as composing the family Rhynchocinetidae. The SATé‐II method is considered superior to the other phylogenetic analyses employed, which failed to recognize these two major clades. Studies using more genes and a more complete species data set are needed to test yet unresolved inter‐ and intrafamilial systematic and evolutionary questions about this remarkable clade of caridean shrimps. © 2014 The Linnean Society of London  相似文献   

5.
浙江省温岭海区虾类资源调查   总被引:4,自引:0,他引:4  
于1999-2001年间对温岭海区虾类进行了调查,调查表明,该海区计有虾24种,分属7科16属。其中,对虾科8种12种;樱虾科1属2种;玻璃虾科1属1种;鼓虾科1属3种;长臂虾科2属3种;藻虾科2属2种;龙虾科1属1种。对该海区的虾类资源作了评价,并提出了资源开发保护的建议。  相似文献   

6.
《Genomics》2020,112(1):65-70
The mitochondrial genome (mitogenome) has been widely used in phylogenetics and molecular evolution as a parameter, due to its simple genetic structure, high evolutionary rate, and compositional heterogeneity properties. Alpheidae is a large and highly diverse family of the Caridea infraorder, currently containing about 600 species dispersed all over the world. However, only a few shrimps in Alpheidae have their complete mitogenome annotated in GenBank. In our study, the entire mitogenomes of two shrimps from Alpheidae were determined, Alpheus randalli and Alpheus bellulus. The mitogenomes of both shrimps share the complete set of 37 mitochondrial genes found in other Alpheidae species. In A. randalli the AT-skew is slightly positive and GC-skew is negative, whereas in A. bellulus the AT-skew is negative and GC-skew is slightly positive. Furthermore, the secondary structures of trnS1 in the two shrimps are partially missing, and another three tRNAs formed the typical cloverleaf shaped secondary structures. Also, the trnS1 of A. randalli has an unusual anticodon stem with some unpaired nucleotides. Comparative genomic analysis suggests that the mitochondrial gene order of Alpheus genus exhibits a different gene rearrangement compared with that of Caridea. Most species in Alpheus share the same gene order, except for A. lobidens, which has an additional pseudogenomic trnQ (trnQ*). Compared with the mitochondrial gene order of Caridea the Alpheus trnE underwent both translocation and inversion, which were caused by a recombination event. Bayesian inferences (BI) and Maximum Likelihood (ML) phylogenetic analyses of 105 species amino acid datasets resulted in a well-supported topology, whereas four families in Caridea are monophyletic and can be divided into two major clades. Moreover, we demonstrated the phylogenetic relationships of six infraorders in Decapoda (Dendrobranchiata, (Caridea, (Stenopodidea, (Achelata, (Polychelida, Astacidea))))). This study used the large taxon sampling available to date for phylomitogenomic analysis. The results provide a theoretical basis for further research on the evolution of the Decapoda order, specifically Caridea infraorder.  相似文献   

7.
Recent genome size estimates for Arctic amphipods have revealed the largest genomes known in the Crustacea. Here we provide additional data for 7 species of caridean shrimp collected from the Canadian Arctic and the Gulf of St. Lawrence. Genome sizes were estimated by flow cytometry and haploid C-values ranged from 8.53 +/- 0.30 pg in Pandalus montagui (Pandalidae) to 40.89 +/- 1.23 pg in Sclerocrangon ferox (Crangonidae). The value for S. ferox represents the largest decapod genome yet recorded and indicates a 38-fold variation in genome size within this order. These data suggest that large genomes may be relatively common in Arctic crustaceans, and underline the need for further comparative studies.  相似文献   

8.
The complete sequence of the mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus Miers (Crustacea: Decapoda: Caridea) is presented here. A comparative analysis based on the currently available mitochondrial genomic data revealed many previously unknown characteristics of the mitochondrial genomes of caridean shrimps. The A. japonicus mitochondrial genome is 16487 bp long and contains the typical set of 37 metazoan genes. The gene arrangements in the mitochondrial genomes of four previously studied carideans (Macrobrachium rosenbergii, M. nipponense, M. lanchesteri and Halocaridina rubra) were found to be identical to the pancrustacean ground pattern; thus, it was considered that gene rearrangements probably did not occur in the suborder Caridea. In the present study, a translocation of the trnE gene involving inversion was found in Alpheus mitochondrial genomes. This phenomenon has not been reported in any other crustacean mitochondrial genome that has been studied so far; however, the translocation of one transfer RNA gene (trnP or trnT) was reported in the mitochondrial genome of Exopalaemon carinicauda. When the ratios of the nonsynonymous and synonymous substitutions rates (Ka/Ks) for the 13 protein coding genes from two Alpheus species (A. japonicus and A. distinguendus) and three Macrobrachium species (M. rosenbergii, M. nipponense, M. lanchesteri) were calculated, the Ka/Ks values for all the protein coding genes in Alpheus and Macrobrachium mitochondrial genomes were found to be less than 1 (between 0.0048 and 0.2057), indicating that a strong purification selection had occurred. The phylogenetic tree that was constructed based on the mitochondrial protein coding genes in the genomes of nine related species indicated that Palaemonidae and Alpheidae formed a monophyly and shared a statistically significant relationship, (Palaemonidae+Alpheidae)+Atyidae, at the family level.  相似文献   

9.
Freshwater caridean shrimps account for approximately a quarter of all described Caridea, numerically dominated by the Atyidae and Palaemonidae. With the exception of Antarctica, freshwater shrimp are present in all biogeographical regions. However, the Oriental region harbours the majority of species, whilst the Nearctic and western Palaearctic are very species-poor. Many species are important components of subsistence fisheries, whilst the Giant River Prawn forms the basis of an extensive aquaculture industry. A total of 13 species are threatened or endangered, with one species formally extinct. Guest editors: E. V. Balian, C. Lévêque, H. Segers and K. Martens Freshwater Animal Diversity Assessment  相似文献   

10.
The infraorder Thalassinidea is a group of cryptic marine burrowing decapods of which the higher taxonomy is often contentious. The present analysis attempts to reconstruct phylogenetic relationship among 12 of the 13 currently recognized families using partial nuclear 18S, 28S rDNA and mitochondrial 16S rDNA sequences. The infraorder is divided into two distinct clades, with the first clade consisting of Thalassinidae, Laomediidae, Axianassidae and Upogebiidae, and the second clade including Axiidae, Calocarididae, Eiconaxiidae, Callianassidae, Ctenochelidae, Micheleidae, Strahlaxiidae and Callianideidae. Within the first clade, the Upogebiidae is the basal family. The Axianassidae shows low affinity to other laomediid genera indicating that it is a valid family. The interfamilial relationships are less well resolved in the second clade. The Axiidae is paraphyletic with respect to Calocarididae and Eiconaxiidae. Thus, the status of these two latter families is not supported if the currently defined Axiidae is maintained. All three families appear to be basal in the thalassinidean clade. The Micheleidae is closely related to the Callianideidae and they form a sister group to the Strahlaxiidae. The monophyletic Callianassidae aligns with the Micheleidae + Callianideidae + Strahlaxiidae clade. The relationship among the Axiidae + Calocarididae + Eiconaxiidae clade, Callianassidae + Micheleidae + Callianideidae + Strahlaxiidae clade and the Ctenochelidae cannot be resolved which might be due to a rapid radiation of the three lineages. Our results do not support the generally used classification scheme of Thalassinidea and suggest that the infraorder might be divided into two superfamilies instead of three as suggested based on larval morphology, second pereiopod morphology in adults and gastric mill structure. The two superfamilies are Thalassinoidea (i.e. Thalassinidae, Laomediidae, Upogebiidae and Axianassidae) and Callianassoidea (i.e. Axioidea + Callianassoidea, as defined in Martin and Davis (2001) but excluding Laomediidae and Upogebiidae). It also appears that gill‐cleaning adaptations are important in thalassinidean evolution while the presence of linea thalassinica is a result of parallel evolution.  相似文献   

11.
基于18S rDNA序列的蝽次目(半翅目:异翅亚目)   总被引:4,自引:0,他引:4  
利用18SrDNA分子约1 912 bp的序列对蝽次目21个科53个种进行系统发育分析。运用MP法、ML法和NJ法分析后的结果表明:蝽次目的单系性得到很高的支持;扁蝽总科成为毛点类的姐妹群;毛点类基本确定为两大分支:一支包含蝽总科和红蝽总科;另一支主要由长蝽总科、缘蝽总科和南蝽总科组成;长蝽总科和缘蝽总科都是多系;长蝽总科中,跷蝽科和皮蝽科的关系最近,构成姐妹群,位于整个毛点类的基部;与长蝽总科中另外两个科长蝽科和地长蝽科的关系很远。说明利用18SrDNA分子对研究蝽次目的系统发育关系是适合的,能够重建蝽次目;扁蝽总科和蝽总科单系性的结果与形态学的研究以及Li et al (2005)的研究一致;但较Li et al(2005)的研究更进一步把红蝽总科从广义的缘蝽总科中分出来;并建议皮蝽科作为一个独立的总科更合适。  相似文献   

12.
Eusiroidea is one of the 20 amphipod superfamilies that were erected to subdivide the very large and controversial suborder Gammaridea. Yet, the definition of the superfamily is not based on synapomorphies, but on a combination of diagnostic phenetic similarities that hold more or less consistently across families. Moreover, many of the characters used to define eusiroid families are suspected to show convergent evolution. The current classification of the Eusiroidea may therefore not reflect evolutionary relationships accurately. Here, we present a molecular phylogenetic re‐analysis of the Eusiroidea based on a comparison of 18S and 28S rDNA sequences of 73 species, representing 47 genera and 16 families that potentially belong to the superfamily. The results suggest that at least species belonging to 14 of these traditional families would be part of a eusiroid clade, increasing by more than twofold the species and generic richness of the group. However, most of the eusiroid families surveyed do not appear monophyletic. Finally, the analyses show that several important morphological characteristics, traditionally used in eusiroid taxonomy, are homoplastic.  相似文献   

13.
为了解黄渤海甲壳类的分类多样性特征, 我们统计了2010-2015年中国水产科学研究院黄海水产研究所调查捕获的黄渤海甲壳类(软甲纲: 十足目与口足目)物种名录。结合历史文献, 进一步系统整理得到黄渤海甲壳类物种总名录。基于这2个名录, 应用分类阶元包含指数(the inclusion index at taxonomic level, TINCLi)、平均分类差异指数(average taxonomic distinctness index, Δ+)和分类差异变异指数(variation in taxonomic distinctness index, Λ+)研究了其分类多样性特征。结果显示: 2010-2015年调查名录中, 甲壳类共93种, 隶属于2目39科66属, 其中10种为新分布种; 对虾科、藻虾科、长臂虾科、梭子蟹科和弓蟹科的物种数最多, 合计占总物种数的38.71%; TINCLi分别为1.41种/属和2.38种/科; Δ+和Λ+分别为50.25和35.20。总名录中, 甲壳类共228种, 隶属于2目53科123属, 其中藻虾科、豆蟹科、对虾科、弓蟹科和鼓虾科的物种数最多, 合计占总物种数的30.70%; TINCLi分别为1.85种/属和4.30种/科, Δ+和Λ+分别为50.18和30.87。对虾科的相对丰富度指数(the relative richness index, Rr)最高(100), 其次是梭子蟹科(71.43)和长臂虾科(62.50), 豆蟹科最低(6.25)。黄渤海甲壳类的平均分类差异指数(Δ+)明显小于鱼类(P < 0.05)。2010-2015年调查的Δ+计算值高于理论值, 且在理论值的95%置信区间内, 说明黄渤海甲壳类群落正处在中等程度的干扰中。  相似文献   

14.
A phylogenetic analysis of a total of 31 species: 27 fossil species from seven families (Glypheidae, Litogastridae, Mecochiridae, Pemphicidae, Erymidae, Clytiopsidae, Chimaerastacidae), and four extant species from three families (Glypheidae, Nephropidae, Stenopodidae) is proposed. Most of the genera considered are coded exclusively based upon their type species and, as much as possible, based upon the type specimens. The cladistic analysis demonstrates that the glypheidean lobsters (infraorder Glypheidea) form a monophyletic group including two superfamilies: Glypheoidea and Pemphicoidea new status. Glypheoidea includes three families: Glypheidae, Mecochiridae and Litogastridae. Litogastridae is the sister group of the clade Glypheidae + Mecochiridae. Pemphicoidea includes a single family: Pemphicidae. A new classification of Glypheidea is proposed and currently known genera are rearranged based upon the phylogenetic analysis.  相似文献   

15.
The carpo-propodal brush on the first pereiopod (P1-CP) is a unique specialisation of natant decapods used to groom the antennal flagellum. Previous studies have documented its occurrence in several families of Caridea, Procarididea, Dendrobranchiata and Stenopodidea. These studies have been updated to include material from 33 out of the 35 currently recognised caridean families. The results demonstrate the majority of families have a P1-CP: species from only 12 of 33 families surveyed lacked the brush. Considerable variation is noted in the structure of the brush and its constituent setae which are principally serrulate. In general, two different patterns of brush structure can be recognised, with extensive minor variation within a pattern; although several families deviate widely from this pattern. As the structure appears conservative within families, it is evident that the P1-CP brush could be a phylogenetically informative character, which should be included in future cladistic analysis at generic level and above.  相似文献   

16.
MOTIVATION: Structural genomics projects aim to solve a large number of protein structures with the ultimate objective of representing the entire protein space. The computational challenge is to identify and prioritize a small set of proteins with new, currently unknown, superfamilies or folds. RESULTS: We develop a method that assigns each protein a likelihood of it belonging to a new, yet undetermined, structural superfamily. The method relies on a variant of ProtoNet, an automatic hierarchical classification scheme of all protein sequences from SwissProt. Our results show that proteins that are remote from solved structures in the ProtoNet hierarchy are more likely to belong to new superfamilies. The results are validated against SCOP releases from recent years that account for about half of the solved structures known to date. We show that our new method and the representation of ProtoNet are superior in detecting new targets, compared to our previous method using ProtoMap classification. Furthermore, our method outperforms PSI-BLAST search in detecting potential new superfamilies.  相似文献   

17.
Phylogenic relationships of the Psoroptidia, a group of primarily parasitic mites of vertebrates, were investigated based on sequences from three nuclear genes (4.2 kb aligned) sampled from 126 taxa. Several morphological classification schemes and a recent molecular analysis, suggesting that the group may not be monophyletic were statistically rejected by newly generated molecular data, and the results are robust under a range of analytical and partition strategies. Six families Psoroptidae, Lobalgidae (mammalian parasites), Pyroglyphidae (house dust mites and parasites inside feather calamus), Turbinoptidae (upper respiratory track parasites of birds), Psoroptoididae (downy feather mites), and Epidermoptidae (skin parasites of birds) form a well-supported monophyletic group (the epidermoptid-psoroptid complex). These relationships, recovered by combined and separate analyses of all gene partitions, were previously suspected based on some morphological evidence, but evidence has been dismissed as resulting from convergence based on similar parasitic ecologies. The existence of the epidermoptid-psoroptid complex and the statistical rejection of Sarcoptoidea (the morphology-based group joining all mammal-associated mites) indicate that current classification criteria, influenced as they are by host preferences, need to be reassessed for non-pterolichoid superfamilies. However, two of our findings remain sensitive to analytical methods and assumptions: (i) the families Heterocoptidae and Hypoderatidae as the first and second closest outgroups of Psoroptidia, respectively, and (ii) the superfamily Pterolichoidea (including Freyanoidea) forming a sister clade to the remaining psoroptidian superfamilies. Our findings suggest that (i) house dust mites (Pyroglyphidae: Dermatophagoidinae) originated from a parasitic ancestor within the core of Psoroptidia, violating a basic principle of evolution that it is virtually impossible for a permanent parasite to become free-living, and (ii) there were at least two shifts from presumably avian to mammalian hosts.  相似文献   

18.
The Gelechioidea (>18 000 species), one of the largest superfamilies of Lepidoptera, are a major element of terrestrial ecosystems and include important pests and biological model species. Despite much recent progress, our understanding of the classification, phylogeny and evolution of Gelechioidea remains limited. Building on recent molecular studies of this superfamily and a recently revised family/subfamily classification, we provide an independent estimate of among‐family relationships, with little overlap in gene sample. We analysed up to five nuclear genes, totalling 6633 bp, for each of 77 gelechioids, plus up to 14 additional genes, for a total of 14 826 bp, in 45 of those taxa and all 19 outgroup taxa. Our maximum‐likelihood (ML) analyses, like those of previous authors, strongly support monophyly for most multiply‐sampled families and subfamilies, but very weakly support most relationships above the family level. Our tree looks superficially divergent from that of the most recent molecular study of gelechioids, but when the previous tree is re‐rooted to accord maximally with ours, the two phylogenies agree entirely on the deepest‐level divergences in Gelechioidea, and strongly though incompletely on among‐family relationships within the major groups. This concordance between independent studies is evidence that the groupings (or at least the unrooted branching order) are probably accurate, despite the low bootstrap values. After re‐rooting, both trees divide the families into three monophyletic groups: a ‘Gelechiid Assemblage,’ consisting of Gelechiidae and Cosmopterigidae; a ‘Scythridid Assemblage,’ consisting of Stathmopodidae, Scythrididae, Blastobasidae, Elachistidae, Momphidae, Coleophoridae and Batrachedridae; and a ‘Depressariid Assemblage,’ consisting of Autostichidae, Xyloryctidae, Lecithoceridae, Oecophoridae, Depressariidae and Lypusidae. Within the largest family, Gelechiidae, our results strongly support the pairing of Anomologinae with Gelechiinae, in accordance with a recent study of this family. Relationships among the other subfamilies, however, conflict moderately to strongly between studies, leaving the intrafamily phylogeny unsettled. Within the ‘Scythridid Assemblage,’ both trees support an ‘SSB clade’ consisting of Blastobasidae + (Scythrididae + Stathmopodidae), strongly resolved only in our results. Coleophoridae + Batrachedridae is supported, albeit weakly, in both trees, and only Momphidae differ in position between studies. Within the ‘Depressariid Assemblage,’ both trees support an ‘AXLO’ clade consisting of Autostichidae, Xyloryctidae, Lecithoceridae and Oecophoridae. The monophyly of this clade and relationships therein are supported weakly in previous results but strongly in ours. The recently re‐defined family Depressariidae is paraphyletic in our tree, but the evidence against depressariid monophyly is very weak. There is moderate support for a core group of Depressariidae consisting, among the seven subfamilies we sampled, of Depressariinae, Aeolanthinae and Hypertrophinae. We show that gelechioids have a higher total number and percentage of species that are saprophagous as larvae than any other apoditrysian superfamily, that saprophagy is concentrated primarily in the ‘AXLO clade,’ and that the ancestral gelechioid condition was probably feeding on live plants. Among the living‐plant feeders, concealed external feeding was probably the ancestral state. The multiple origins of internal feeding of various kinds, including leaf mining (otherwise almost unknown in Apoditrysia), are restricted mostly to the Scythridid and Gelechiid Assemblages. The traits that predispose or permit lineages to adopt these unusual life histories are worthy of study.  相似文献   

19.
水螨群总科阶元系统发育的支序分析 (蜱螨亚纲:水螨群)   总被引:1,自引:0,他引:1  
金道超 《昆虫学报》2000,43(3):309-317
对水螨群9总科进行了系统发育分析,支序分析选用了23个形态学特征和3个生物学特征。据分析结果所揭示的9总科间的系统发育关系和姐妹群关系,将水螨群9总科划分为5类:拟水螨类,含冥绒螨总科;始水螨类,含溪螨总科;真水螨类,含古水螨类和新水螨类;古水螨类,含水螨总科、盾水螨总科和皱喙螨总科;新水螨类,含刺触螨总科、腺水螨总科、湿螨总科和雄尾螨总科。类间姐妹群关系为:拟水螨类与始水螨类+真水螨类为姐妹群,始水螨类与真水螨类(古水螨类+新水螨类)为姐妹群,古水螨类与新水螨类为姐妹群。该文还就所提出的水螨群5类9总科的阶元排列建议与已有的观点进行了比较。  相似文献   

20.
Phylogeny and classification of the avian superfamily Sylvioidea   总被引:5,自引:0,他引:5  
Sylvioidea is one of the three superfamilies recognized within the largest avian radiation, the parvorder Passerida. In the present study, which is the first taxon-dense analysis of the Sylvioidea based on sequence data (nuclear myoglobin intron II and mitochondrial cytochrome b gene), we investigate the interrelationships among the four "sylvioid" clades found by previous workers, as well as the relationships within the largest of these clades. The nuclear and mitochondrial loci estimate basically the same phylogeny, with minor differences in resolution. The trees based on myoglobin and the combined data identify a strongly supported clade that includes the taxa previously allocated to Sylvioidea, except for Sitta (nuthatches), Certhia (treecreepers), Parus (tits), Remiz (penduline tits), Troglodytes and Campylorhynchus (wrens), Polioptila (gnatcatchers), and Regulus (crests/kinglets); this clade also comprises larks, which have previously been placed in the superfamily Passeroidea. We refer to this clade as Sylvioidea. This clade is further divided into 10 main, well-supported clades, which we suggest form the basis for a revised classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号