首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the effect of culture temperature on erythropoietin (EPO) production and glycosylation in recombinant Chinese hamster ovary (CHO) cells, we cultivated CHO cells using a perfusion bioreactor. Cells were cultivated at 37 degrees C until viable cell concentration reached 1 x 10(7) cells/mL, and then culture temperature was shifted to 25 degrees C, 28 degrees C, 30 degrees C, 32 degrees C, 37 degrees C (control), respectively. Lowering culture temperature suppressed cell growth but was beneficial to maintain high cell viability for a longer period. In a control culture at 37 degrees C, cell viability gradually decreased and fell below 80% on day 18 while it remained over 90% throughout the culture at low culture temperature. The cumulative EPO production and specific EPO productivity, q(EPO), increased at low culture temperature and were the highest at 32 degrees C and 30 degrees C, respectively. Interestingly, the cumulative EPO production at culture temperature below 32 degrees C was not as high as the cumulative EPO production at 32 degrees C although the q(EPO) at culture temperature below 32 degrees C was comparable or even higher than the q(EPO) at 32 degrees C. This implies that the beneficial effect of lowering culture temperature below 32 degrees C on q(EPO) is outweighed by its detrimental effect on the integral of viable cells. The glycosylation of EPO was evaluated by isoelectric focusing, normal phase HPLC and anion exchange chromatography analyses. The quality of EPO at 32 degrees C in regard to acidic isoforms, antennary structures and sialylated N-linked glycans was comparable to that at 37 degrees C. However, at culture temperatures below 32 degrees C, the proportions of acidic isoforms, tetra-antennary structures and tetra-sialylated N-linked glycans were further reduced, suggesting that lowering culture temperature below 32 degrees C negatively affect the quality of EPO. Thus, taken together, cell culture at 32 degrees C turned out to be the most satisfactory since it showed the highest cumulative EPO production, and moreover, EPO quality at 32 degrees C was not deteriorated as obtained at 37 degrees C.  相似文献   

2.
To investigate the effect of culture pH in the range of 6.85-7.80 on cell growth and erythropoietin (EPO) production at 32.5 and 37.0 degrees C, serum-free suspension cultures of recombinant CHO cells (rCHO) were performed in a bioreactor with pH control. Lowering culture temperature from 37.0 to 32.5 degrees C suppressed cell growth, but cell viability remained high for a longer culture period. Regardless of culture temperature, the highest specific growth rate (mu) and maximum viable cell concentration were obtained at pH values of 7.00 and 7.20, respectively. Like mu, the specific consumption rates of glucose and glutamine decreased at 32.5 degrees C compared to 37.0 degrees C. In addition, they increased with increasing culture pH. Culture pH at 32.5 degrees C affected specific EPO productivity (q(EPO)) in a different fashion from that at 37 degrees C. At 37 degrees C, the q(EPO) was fairly constant in the pH range of 6.85-7.80, while at 32.5 degrees C, the q(EPO) was significantly influenced by culture pH. The highest q(EPO) was obtained at pH 7.00 and 32.5 degrees C, and its value was approximately 1.5-fold higher than that at pH 7.00 and 37.0 degrees C. The proportion of acidic EPO isoforms, which is a critical factor for high in vivo biological activity of EPO, was highest in the stationary phase of growth, regardless of culture temperature and pH. Although cell viability rapidly decreased in death phase at both 32.5 and 37.0 degrees C, the significant degradation of produced EPO, probably by the action of proteases released from lysed cells, was observed only at 37.0 degrees C. Taken together, through the optimization of culture temperature and pH, a 3-fold increase in maximum EPO concentration and a 1.4-fold increase in volumetric productivity were obtained at pH 7.00 and 32.5 degrees C when compared with those at 37.0 degrees C. These results demonstrate the importance of optimization of culture temperature and pH for enhancing EPO production in serum-free, suspension culture of rCHO cells.  相似文献   

3.
4.
5.
To determine the effect of hyperosmotic stress on the monoclonal antibody (MAb) production by calcium-alginate-immobilized S3H5/gamma2bA2 hybridoma cells, the osmolalities of medium in the MAb production stage were varied through the addition of NaCI. The specific MAb productivity (q(MAb)) of immobilized cells exposed to abrupt hyperosmotic stress (398 mOsm/kg) was increased by 55% when compared with that of immobilized cells in the control culture (286 mOsm/kg). Furthermore, this enhancement of q(MAb) was not transient. Abrupt increase in osmolality, however, inhibited cell growth, resulting in no increase in volumetric MAb productivity (r(MAb)). On the other hand, gradual increase in osmolality allowed further cell growth while maintaining the enhanced q(MAb) immobilized cells. The q(MAb) immobilized cells at 395 mOsm/kg was 0.661 +/- 0.019 mug/10(6) cells/h, which is almost identical to that of immobilized cells exposed to abrupt osmotic stress. Accordingly, the r(MAb) was increased by ca. 40% when compared with that in the control immobilized cell culture. This enhancement in i(MAb) of immobilized S3H5/gamma2bA2 hybridoma cells by applying gradual osmotic stress suggests the potential of using hyperosmolar medium in other perfusion culture systems for improved MAb production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
Elevated osmolality and pCO(2) have been shown to alter sialylation in a protein-specific manner. In Chinese hamster ovary (CHO)MT2-l-8 cells, tPA sialylation changed only slightly from 40 to 250 mm Hg pCO(2), whereas neural cell adhesion molecule polysialic acid (NCAM PSA) content decreased by up to 70% at 250 mm Hg pCO(2), pH 7.2. NCAM PSA content also decreased with increasing NaCl or NH(4)Cl concentration. This suggests that PSA content is a sensitive indicator of conditions that may alter glycosylation. Amino acids and their derivatives have been used to protect hybridoma and CHO cell growth under hyperosmotic stress. We examined the impact of osmoprotectants on NCAM PSA content in CHO MT2-1-8 cells under hyperosmolality (up to 545 mOsm/kg) and at 195 and 250 mm Hg pCO(2). NCAM PSA content at 545 mOsm/kg was at least two-fold greater in the presence of glycine betaine or L-proline compared to that without osmoprotectant. Surprisingly, in the presence of 20 mM glycine betaine, PSA levels were 50-60% of the control level for osmolalities ranging from 320 to 545 mOsm/kg. Thus, glycine betaine inhibits NCAM polysialylation at osmolalities below 435 mOsm/kg and is beneficial at higher osmolalities. In contrast to glycine betaine, L-proline increased PSA content by 25-120% relative to the unprotected culture at < or =545 mOsm/kg. The decrease in NCAM PSA levels of CHO MT2-1-8 cells cultured at 195 mm Hg pCO(2)-435 mOsm/kg was not mitigated by the presence of 25 mM glycine betaine, glycine, or L-threonine, even though all of these compounds enhanced cell growth. At 250 mm Hg pCO(2), all osmoprotectants tested (20 mM L-threonine, L-proline, glycine, or glycine betaine) increased NCAM polysialylation, with 20 mM glycine betaine restoring NCAM PSA to near control levels. Thus, osmoprotectants may (partially) offset changes in glycosylation, as well as the inhibition of growth, in cells under environmental stress. Supernatant beta-galactosidase levels, which increase upon alkalization of acidic organelles, did not differ significantly under elevated pCO(2) and hyperosmolality from that at control conditions.  相似文献   

7.
Partial pressure of CO2 (pCO2) and osmolality as high as 150 mmHg and 440 mOsm/kg, respectively, were observed in large-scale CHO cell culture producing an antibody-fusion protein, B1. pCO2 and osmolality, when elevated to high levels in bioreactors, can adversely affect cell culture and recombinant protein production. To understand the sole impact of pCO2 or osmolality on CHO cell growth, experiments were performed in bench-scale bioreactors allowing one variable to change while controlling the other. Elevating pCO2 from 50 to 150 mmHg under controlled osmolality (about 350 mOsm/kg) resulted in a 9% reduction in specific cell growth rate. In contrast, increasing osmolality resulted in a linear reduction in specific cell growth rate (0.008 h(-1)/100 mOsm/kg) and led to a 60% decrease at 450 mOsm/kg as compared to the control at 316 mOsm/kg. This osmolality shift from 316 to 445 mOsm/kg resulted in an increase in specific production rates of lactate and ammonia by 43% and 48%, respectively. To elucidate the effect of high osmolality and/or pCO2 on the production phase, experiments were conducted in bench-scale bioreactors to more closely reflect the pCO2 and osmolality levels observed at large scale. Increasing osmolality to 400-450 mOsm/kg did not result in an obvious change in viable cell density and product titer. However, a further increase in osmolality to 460-500 mOsm/kg led to a 5% reduction in viable cell density and a 8% decrease in cell viability as compared to the control. Final titer was not affected as a result of an apparent increase in specific production rate under this increased osmolality. Furthermore, the combined effects from high pCO2 (140-160 mmHg) and osmolality (400-450 mOsm/kg) caused a 20% drop in viable cell density, a more prominent decrease as compared to elevated osmolality alone. Results obtained here illustrate the sole effect of high pCO2 (or osmolality) on CHO cell growth and demonstrate a distinct impact of high osmolality and/or pCO2 on production phase as compared to that on growth phase. These results are useful to understand the response of the CHO cells to elevated pCO2 (and/or osmolality) at a different stage of cultivation in bioreactors and thus are valuable in guiding bioreactor optimization toward improving protein production.  相似文献   

8.
To investigate the effect of hyperosmotic medium on production and aggregation of the variant of Angiopoietin-1 (Ang1), cartilage oligomeric matrix protein (COMP)–Ang1, in recombinant Chinese hamster ovary (CHO) cells, CHO cells were cultivated in shaking flasks. NaCl and/or sorbitol were used to raise medium osmolality in the range of 300–450 mOsm/kg. The specific productivity of COMP–Ang1, qCOMP–Ang1, increased as medium osmolality increased. At NaCl-450 mOsm/kg, the qCOMP–Ang1 was 7.7-fold higher than that at NaCl-300 mOsm/kg, while, at sorbitol-450 mOsm/kg, it was 2.9-fold higher than that at sorbitol-300 mOsm/kg. This can be attributed to the increased relative mRNA level of COMP–Ang1 at NaCl-450 mOsm/kg which was approximately 2.4-fold higher than that at sorbitol-450 mOsm/kg. Western blot analysis showed that COMP–Ang1 aggregates started to occur in the late-exponential phase of cell growth. When sorbitol was used to raise the medium osmolality, a severe aggregation of COMP–Ang1 was observed. On the other hand, when NaCl was used, the aggregation of COMP–Ang1 was drastically reduced at NaCl-400 mOsm/kg. At NaCl-450 mOsm/kg, the aggregation of COMP–Ang1 was hardly observed. This suggests that environmental conditions are critical for the aggregation of COMP–Ang1. Taken together, the use of NaCl-induced hyperosmotic medium to cell culture process turns out to be an efficient strategy for enhancing COMP–Ang1 production and reducing COMP–Ang1 aggregation.  相似文献   

9.
When sodium butyrate (NaBu) was added to serum-free suspension culture of recombinant CHO (rCHO) cells for enhanced expression of human thrombopoietin (hTPO), apoptotic cell death of rCHO cells was induced in a dose-dependent manner and hTPO quality was deteriorated in regard to sialic acid and acidic isoform contents. To overcome these problems, we overexpressed Bcl-2 protein, an antiapoptotic protein, in rCHO cells producing hTPO. Compared to serum-free suspension culture of control cells without Bcl-2 overexpression (R-neo cells) and NaBu addition, a more than 10-fold increase in the maximum hTPO concentration was obtained in serum-free suspension culture of cells with Bcl-2 overexpression (R-bc12-14 cells) and 3 mM NaBu addition. Both the enhanced specific productivity endowed by NaBu and the extended culture longevity provided by the antiapoptotic effect of Bcl-2 overexpression contributed to the enhancement of maximum hTPO concentration. The problem of quality reduction of hTPO induced by NaBu was not solved by Bcl-2 overexpression, but it was not that significant. Compared to the culture in the absence of NaBu, the percentage of hTPO isoforms in pI 3-5 with high in vivo biological activity produced by R-bc12-14 cells was decreased by approximately 18% in the presence of 3 mM. As a result, a more than 6-fold increase in the production of hTPO isoforms in pI 3-5 was achieved in R-bcl2-14 cell culture with 3 mM NaBu addition. Taken together, the data obtained suggest that Bcl-2 overexpression in rCHO cells and NaBu addition in serum-free suspension culture can be an effective means to enhance the production of highly glycosylated protein such as hTPO.  相似文献   

10.
In an attempt to use the hyperosmotic pressure for improved foreign protein production in recombinant Chinese hamster ovary (rCHO) cells, the response of rCHO cells producing a humanized antibody (SH2-0.32-(Delta)bcl-2 cells) to hyperosmotic pressure was determined in regard to cell growth and death, and antibody production. Further, the feasibility of Bcl-2 overexpression in improving rCHO cell viability under hyperosmotic pressure was also determined by comparing control cells (SH2-0.32-(Delta)bcl-2) with Bcl-2 overexpressing cells (14C6-bcl-2). After 3 days of cultivation in the standard medium (294 mOsm x kg(-1)), the spent medium was exchanged with the fresh media with various osmolalities (294-640 mOsm x kg(-1)). The results obtained show that hyperosmotic pressure inhibited cell growth in a dose-dependent manner, though 14C6-bcl-2 cells were less susceptible to hyperosmotic pressure than SH2-0.32-(Delta)bcl-2 cells. At 522 mOsm x kg(-1), SH2-0.32-(Delta)bcl-2 cells underwent a gradual cell death mainly through apoptosis due to the cytotoxic effect of hyperosmotic pressure. In contrast, Bcl-2 overexpression in 14C6-bcl-2 cells could delay the apoptosis induced by 522 mOsm x kg(-1) by inhibiting caspase-3 activation. Bcl-2 overexpression could also improve the cellular membrane integrity of 14C6-bcl-2 cells. When subjected to hyperosmotic pressure, the specific antibody productivity of SH2-0.32-(Delta)bcl-2 cells and 14C6-bcl-2 cells was increased in a similar extent. As a result, the final antibody concentration achieved in 14C6-bcl-2 cells at 522 mOsm x kg(-1) was 2.5-fold higher than that at 294 mOsm x kg(-1). At 580 mOsm x kg(-1), acute hyperosmotic pressure induced the rapid loss of viability in both SH2-0.32-(Delta)bcl-2 and 14C6-bcl-2 cells through necrosis rather than through apoptosis. Taken together, Bcl-2 overexpression and optimized hyperosmotic pressure could improve the antibody production of rCHO cells.  相似文献   

11.
The production of phytase and associated feed enzymes (phosphatase, xylanase, CMCase, alpha-amylase and beta-glucosidase) was determined in a thermotolerant fungus Mucor indicus MTCC 6333, isolated from composting soil. Solid-substrate culturing on wheat bran and optimizing other culture conditions (C and N sources, level of N, temperature, pH, culture age, inoculum level), increased the yield of phytase from 266 +/- 0.2 to 513 +/- 0.4 nkat/g substrate dry mass. The culture extract also contained 112, 194, 171, 396, and 333 nkat/g substrate of phosphatase, xylanase, CMCase, beta-glucosidase and alpha-amylase activities, respectively. Simple 2-step purification employing anion exchange and gel filtration chromatography resulted in 21.9-fold purified phytase. The optimum pH and temperature were pH 6.0 and 70 degrees C, respectively. The phytase was thermostable under acidic conditions, showing 82% residual activity after exposure to 60 degrees C at pH 3.0 and 5.0 for 2 h, and displayed broad substrate specificity. The Km was 200 nmol/L and v(lim) of 113 nmol/s per mg protein with dodecasodium phytate as substrate. In vitro feed trial with feed enzyme resulted in the release of 1.68 g inorganic P/kg of feed after 6 h of incubation at 37 degrees C.  相似文献   

12.
Our previous studies have suggested a role for renomedullary interstitial cells (RMICs) and renal medullary hyaluronan (HA) in water homeostasis. In the present study, cultured rat RMICs were used to examine the relationship of osmolality and oxygen tension on the extracellular amount of HA in the culture and to the cellular immunoreactivity to CD44, a HA binding protein. Under isotonic (330 mOsm(.)kg(-1) H(2)O), normoxic (20% O(2)) conditions, supernatant from sub-confluent RMICs contained 120+/-37 pg 10(4) cells(-1) 24 h(-1) of HA. Under hyperosmotic conditions (630 mOsm kg(-1) H(2)O), HA in the supernatant was decreased by 42% and under hypoosmotic conditions (230 mOsm kg(-1) H(2)O) it was doubled. Under hypoxic, iso-osmolar conditions (5% and 1% O(2), 330 mOsm kg(-1) H(2)O) this HA content was decreased by 56 and 48%, respectively, compared with normoxic, iso-osmolal conditions. Expression of CD44 on sub-confluent cells increased with increasing osmolality, as shown by immunostaining and flow cytometric analysis. The increases in CD44 from 330 to 630, 930 and 1230 mOsm kg(-1) H(2)O amounted to 5, 142 and 212%, respectively. Low oxygen tension (5% O(2)) decreased the intensity of CD44 immunofluorescence by 31%. Cell viability was similar at all conditions studied. In summary, these data indicate that cultured RMICs produce HA and are immunoreactive to CD44. In the supernatant of RMICs, the HA content decreases under hyperosmotic, hypoxic conditions. Conversely, CD44 immunoreactivity increases under hyperosmotic conditions. These results may explain our previous in vivo findings of a decreased renal papillary HA content during anti-diuresis and an increased content during water diuresis. The results support the concept that RMICs play an important role in renal water handling.  相似文献   

13.
The influence of osmolality on growth, metabolism, and antibody production of mammalian cells has been widely reported in the past. However, more information about the responses of GS-NS0 Myeloma cells to osmolality, especially regarding the intracellular mass and energy metabolism, has not been available in detail. Fed-batch cultures started at different osmolalities in the range of 280∼370 mOsm/kg were designed to investigate the effects. As the osmolality and cell status changed during the process, cell performance was evaluated in the comparable periods with similar growth rates, nutrition concentrations, and relatively consistent environments. Metabolic flux analysis indicated most of extra consumed glucose at higher osmolalities flowed into lactate formation pathway. The proportion of glucose flux flowed into glycolysis pathway remained approximately 90% and the need of glucose for biomass synthesis was constantly. Also, more than 88% of the glutamine was used in biomass synthesis and the absolute flux remained constant. The specific consumption rate of glutamine declined significantly when cells were cultured in hypo-osmolality (276 mOsm/kg) and a portion of glutamine was synthesized from glutamate. Furthermore, cells were in the state of high energy production at osmolality of 276 mOsm/kg. More glucose flowed into TCA circle with the high efficiency of energy production to meet the demand. Thus, the IVC, the specific antibody production rate, and maximal antibody concentration in fed-batch culture started at 280 mOsm/kg decreased by 35, 36, and 48% compared to those in the culture started at 330 mOsm/kg.  相似文献   

14.
Our recent study [Danielyan et al., 2005. Eur. J. Cell Biol. 84, 567-579] showed an additive protective effect of endothelin (ET) receptor A (ETA-R) blockade and erythropoietin (EPO) on the survival and rejuvenation of rat astroglial cells exposed to hypoxia. Whether the effects observed with rodent astroglial cells can be reproduced in human astrocytes and whether these effects of ETA-R blockade and EPO on astrocytes are associated with neuronal survival remained open. Therefore, in the present study, the effects of the ETA-R antagonist BQ-123 and EPO on the maintenance of the neuronal population and survival of the human fetal astroglial cell line (SV-FHAS) under normoxic and hypoxic conditions (NC and HC, respectively) were investigated. Rat brain primary cultures exposed to BQ-123 and/or EPO revealed an increase in the number of beta-III tubulin-positive neurons under NC. The hypoxia-caused loss of neurons was abolished by administration of BQ-123 or EPO. Simultaneous application of EPO and BQ-123 led to an additive protective effect on the generation of neurons under NC only. By contrast, BQ-788, the selective ETB-R antagonist, diminished the neuronal population both in NC and HC. Both under NC and HC the number of non-differentiated nestin+/GFAP- neural cells increased upon application of EPO or BQ-123. SV-FHAS responded to BQ-123 or EPO by a decrease in LDH activity in the culture medium under NC (35%) and HC (26% LDH decrease). Concomitant effects of EPO and BQ-123 were illustrated in an additional increase in the survival of human astrocytes (33% under NC and 17% under HC). These data hint at a neuroprotective therapeutic potency of ETA-R blockade, which either alone or in combination with EPO may improve the survival of astroglial and neuronal cells upon hypoxic injury.  相似文献   

15.
A novel process for the production of extracellular carboxymethylcellulase (CMCase) and xylanase by fermentation under nonaseptic or nonsterile conditions is described. The fermentation process is carried out under very acidic conditions of pH 2.0 by using a acidophilic cellulolytic fungus. Microbial contamination is avoided or minimized to an insignificant level under this acid pH condition. The culture medium for this production consists of a carbon source from cellulosics or lignocellulosics, such as Na-CMC, xylan, Avicel cellulose, cellulose powder, alpha-cellulose, sawdust, etc., or a mixture of the forementioned together with simple ingredients such as (NH(4))(2)SO(4), K(2)HPO(4), MgSO(4) and NaNO(3). The fermentation is carried out at room temperature (28-30 degrees C), under aerobic conditions, and without controlling the pH. The CMCase and xylanase produced are stable under very simple storage conditions, such as in the fresh culture medium not containing the substrate for a period of 3 days, at any temperature from 0 to 30 degrees C. These extracellular enzymes have an optimum pH around 3, with the best range of pH from 2.0 to 3.6, for any temperature between 15 and 60 degrees C. The optimum temperatures are 55 degrees C for CMCase activity and 25-50 degrees C for xylanase activity, at any pH between 2.0 and 5.2. The apparent Michaelis constants Km are 2.6 and 1.5 mg/mL for CMCase and xylanase of the culture filtrate, respectively.  相似文献   

16.
Abstract

Several factors may affect erythropoietin (EPO) sugar structures including designing cell culture procedure, pH, concentration of additives, dissolved oxygen, and other physicochemical parameters. In this study, we investigated the influence of changes in effective parameters and compounds on the growth rate of Chinese hamster ovary cell (CHO) cells producing recombinant EPO. Cell culture was performed at different temperature, buffering conditions, and varied concentrations of additives such as pyruvic acid, insulin, GlutaMAX, and sodium butyrate. Results indicated that the optimal temperature and pH were 37?°C and 7.2, respectively. Also, optimal concentrations for pyruvic acid, butyrate, glutamate, and insulin were obtained to be 20?mM, 1?mM, 2?mM, and 40?μg/mL, respectively. Then, cell culture was performed in microcarrier-coated spinner flasks under the optimized condition. The results showed recombinant human EPO (rhEPO) production with adequate purity. Optimization of physicochemical conditions and culture media are important factors to improve the quantity and quality of protein products. This study showed that cell growth and recombinant EPO protein production significantly increased under the optimized conditions. The results of this research can also be used in scale-up to increase the efficiency of EPO production.

Abbreviations: EPO: erythropoietin; CHO cell: Chinese hamster ovary cell; rhEPO: recombinant human EPO; DMEM: modified eagle’s medium; FBS: fetal bovine serum; SDS-PAGE: sodium dodecyl sulfate–polyacrylamide gel electrophoresis; IGF-1: insulin-like growth factor 1  相似文献   

17.
Induction of melanin biosynthesis in Vibrio cholerae.   总被引:3,自引:1,他引:2       下载免费PDF全文
Vibrio cholerae synthesized the pigment melanin in response to specific physiological conditions that were stressful to the bacterium. Pigmentation was induced when V. cholerae was subjected to hyperosmotic stress in conjunction with elevated growth temperatures (above 30 degrees C). The salt concentration tolerated by V. cholerae was lowered by additional abiotic factors such as acidic starting pH of the growth medium and limitation of organic nutrients. Although the amount of toxin detected in the culture supernatant decreased significantly in response to stressful culture conditions, no correlation between the physiological conditions that induced melanogenesis and expression of OmpU or cholera toxin was detected. Since conditions that induce melanin production in V. cholerae occur in both the aquatic environment and the human host, it is possible that melanogenesis has a specific function with respect to the survival of the bacterium in these habitats.  相似文献   

18.
Induction of melanin biosynthesis in Vibrio cholerae.   总被引:1,自引:0,他引:1  
Vibrio cholerae synthesized the pigment melanin in response to specific physiological conditions that were stressful to the bacterium. Pigmentation was induced when V. cholerae was subjected to hyperosmotic stress in conjunction with elevated growth temperatures (above 30 degrees C). The salt concentration tolerated by V. cholerae was lowered by additional abiotic factors such as acidic starting pH of the growth medium and limitation of organic nutrients. Although the amount of toxin detected in the culture supernatant decreased significantly in response to stressful culture conditions, no correlation between the physiological conditions that induced melanogenesis and expression of OmpU or cholera toxin was detected. Since conditions that induce melanin production in V. cholerae occur in both the aquatic environment and the human host, it is possible that melanogenesis has a specific function with respect to the survival of the bacterium in these habitats.  相似文献   

19.
Earlier studies showed that Leishmania major promastigotes are sensitive to osmotic conditions. A reduction in osmolality caused the cells to shorten and to rapidly release most of their large internal pool of alanine. In this study some effects of hyper-osmotic stress were examined. An increase in osmolality of the culture medium from 308 to 625 mOsm/kg caused only a small decrease in growth rate. When cells grown in the usual culture medium (308 mOsm/kg) were washed, resuspended in iso-osmotic buffer, and subjected to acute hyper-osmotic stress by addition of mannitol, the alanine content increased even in the absence of exogenous substrate. Promastigotes, depleted of alanine by a 5-min exposure to hypo-osmotic conditions, also synthesized alanine when resuspended in iso-osmotic buffer. Washed cells resuspended in iso-osmotic buffer consume their internal pool of alanine under aerobic conditions. Rates of consumption decreased on addition of mannitol, becoming zero at about 440 mOsm/kg. At higher osmolalities, alanine synthesis occurred. To estimate whether proteolysis could account for alanine synthesis in the absence of exogenous substrate, cells that had been grown with [1-14C]leucine were washed and resuspended under hypo-, iso-, and hyper-osmotic conditions and the amounts of 14CO2 and 14C-labelled peptides released in 1 h were measured. Little proteolysis occurred under these conditions, but the possibility that proteolysis was the source of the alanine increase, observed in response to hyper-osmotic stress, cannot be ruled out.  相似文献   

20.
1. The basal levels of the osmoregulatory hormones, arginine vasotocin (AVT) and angiotensin II (AII) were measured (by radioimmunoassay) in the plasma of conscious Kelp gulls, Cape gannets and Jackass penguins. 2. The responses of the hormones to similar degrees of hypertonicity and hypovolemia caused by water deprivation have also been determined. 3. Dehydration elevated plasma AVT and plasma AII in all three species. 4. The AVT concentration was increased by 2-4 fold and although in each case the correlation between plasma osmolality and plasma AVT was highly significant (2P less than 0.01), the sensitivity of release was greater in the gull (1.13 pg/ml per mOsm/kg) than in the gannet (0.36 pg/ml per mOsm/kg) or penguin (0.44 pg/ml per mOsm/kg). 5. Dehydration increased plasma AII 3-fold in the three bird types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号