首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Evidence is presented suggesting the existence of a natural ribosome-membrane complex. A reconstruction system is described wherein free ribosomes form a complex which appears to involve cell fragments. The reconstructed complex is similar in stability to the inferred natural complex. The reconstructed complex is generated by lysozyme, and it is concluded that at least part of the inferred natural complex is also generated by lysozyme. These results are discussed with reference to existing data concerning certain membrane-associated systems in bacteria.  相似文献   

2.
Association of U2 snRNP with the spliceosomal complex E.   总被引:2,自引:1,他引:1       下载免费PDF全文
In metazoans, the E complex is operationally defined as an ATP-independent spliceosomal complex that elutes as a single peak on a gel filtration column and can be chased into spliced products in the presence of an excess of competitor pre-mRNA. The A complex is the first ATP-dependent functional spliceosomal complex. U1 snRNP first binds tightly to the 5'splice site in the E complex and U2 snRNP first binds tightly to the branch site in the A complex. In this study, we have generated and characterized a monoclonal antibody (mAb 4G8) directed against SAP 62, a component of U2 snRNP and a subunit of the essential mammalian splicing factor SF3a. We show that this antibody is highly specific for SAP 62, detecting only SAP 62 on Western blots and immunoprecipitating only SAP 62 from nuclear extracts. The anti-SAP 62 antibody also immunoprecipitates U2 snRNP and the A complex. Significantly, however, we find that the E complex is also efficiently immunoprecipitated by the anti-SAP 62 antibody. This antibody does not cross-react with any E complex-specific components, indicating that SAP 62 itself is associated with the E complex. To determine whether other U2 snRNP components are associated with the E complex, we used antibodies to the U2 snRNP proteins B"and SAP 155. These antibodies also specifically immunoprecipitate the E complex. These observations indicate that U2 snRNP is associated with the E complex. However, we find that U2 snRNP is not as tightly bound in the E complex as it is in the A complex. The possible significance of the weak association of U2 snRNP with the E complex is discussed.  相似文献   

3.
Thrombin forms sodium dodecyl sulfate stable complexes of 77 and greater than 450 kDa with proteins secreted by activated platelets. The kinetics of formation of these complexes were investigated by addition of 125I-thrombin to the supernatant solution of A23187-activated platelets. Complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis either with or without reduction of disulfide bonds. When analyzed on nonreduced gels, the 77-kDa complex reached a maximum at about 3 min and then declined as the greater than 450-kDa complex increased. On reduced gels (on which there was no greater than 450-kDa complex) the 77-kDa complex approached the level of the greater than 450-kDa complex on nonreduced gels. The half-time of formation was less than 1 min for the 77-kDa complex and about 15 min for the greater than 450-kDa complex. These time courses suggested that the 77-kDa complex was incorporated into the greater than 450-kDa complex as an essential precursor. Formation of complexes was inhibited by a competitive inhibitor or a noncompetitive inhibitor of thrombin, and the pH dependence of formation of both complexes was similar to the pH dependence for catalytic activity of thrombin. Ca2+ inhibited formation of the greater than 450-kDa complex but not of the 77-kDa complex. A model is presented in which thrombin and a secreted protein form a 77-kDa complex by a process that involves the active site of thrombin. The 77-kDa complex is then incorporated into a greater than 450-kDa complex by thiol-disulfide exchange with thrombospondin, a process that is inhibited by Ca2+. Thrombin in the greater than 450-kDa complex had no catalytic activity.  相似文献   

4.
The major high molecular weight complex of aminoacyl-tRNA synthetases is purified about 1000-fold with 30% yield from rat liver. The synthetase complex sediments at 24 S with a molecular weight of 900,000 +/- 75,000 and contains aminoacylation activities for lysine, arginine, isoleucine, leucine, methionine, glutamine, glutamate, and proline. The 24 S synthetase complex dissociates into 21 S, 18 S, 13 S, 12 S, and 10 S complexes with specific enzymatic activities. Dissociation of the 24 S complex into active free synthetases is achieved by hydrophobic interaction chromatography. The disassembly of the synthetase complex is consistent with the structural model of a heterotypic multienzyme complex and suggests that the complex formation is due to the specific intermolecular interactions among the synthetases.  相似文献   

5.
Summary The photosynthetic pigments of chloroplast thylakoid membranes are complexed with specific intrinsic polypeptides which are included in three supramolecular complexes, photosystem I complex, photosystem II complex and the light-harvesting complex. There is a marked lateral heterogeneity in the distribution of these complexes along the membrane with photosystem II complex and its associated light-harvesting complex being located mainly in the stacked membranes of the grana partitions, while photosystem I complex is found mainly in unstacked thylakoids together with ATP synthetase. In contrast, the intermediate electron transport complex, the cylochrome b-f complex, is rather uniformly distributed in these two membrane regions. The consequences of this lateral heterogeneity in the location of the thylakoid complexes are considered in relation to the function and structure of chloroplasts of higher plants.  相似文献   

6.
The article presents the results of investigation of antitumor properties of platinum–arabinogalactan complex. We showed the ability of the complex to inhibit the growth of Ehrlich ascites tumor cells. It is found that the distribution of the platinum–arabinogalactan complex is not specific only for tumor cells in mice. The complex was found in all tissues and organs examined (ascites cells, embryonic cells, kidney, and liver). The mechanism of action of the arabinogalactan–platinum complex may be similar to cisplatin as the complex is able to accumulate in tumor cells.  相似文献   

7.
A complex between initiation factor IF-2 and fMet-tRNA can be formed under ionic conditions, which are optimal for initiation complex formation. The complex can be retained on cellulose nitrate filters after fixing with glutaraldehyde. The IF-2 - FMet-tRNA complex formation is not influenced by GTP and GDP. Other nucleoside di of triphosphates also have no effect. Evidence is presented that this complex acts as an intermediate in polypeptide chain initiation. The IF-2 - fMet-tRNA complex formation is not influenced by initiation factors IF-1 and IF-3. The binary complex can be bound to the 30-S subunit in the absence of GTP, which indicates that there is no concomittant binding of the IF-2 - fMet-tRNA complex and the nucleotide moiety to the 30-S subunit. The binding of the binary complex is stimulated by GTP. The influence of some inhibitors of initiation on the IF-2 - fMet-tRNA complex formation has been tested. Aurin tricarboxylic acid appeared to be a strong inhibitor, whereas the sulfhydryl reagents N-ethylmaleimide and p-chloromercuribenzoate had no effect.  相似文献   

8.
Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L   总被引:8,自引:8,他引:0       下载免费PDF全文
Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate.  相似文献   

9.
The Mre11 complex undergoes dramatic relocalization in the nuclei of gamma-irradiated and replicating human cells. In this study, we examined Mre11 complex localization and chromatin association in synchronous cultures to examine the molecular determinants of relocalization. The data indicate that the complex is deposited on chromatin in an S phase-specific manner. Mre11 complex chromatin association in S phase was resistant to detergent extraction, in contrast to that in gamma-irradiated cells. The complex exhibits extensive colocalization with proliferating cell nuclear antigen throughout S phase, and chromatin loading is enhanced by replication fork stalling, suggesting that the replication fork is a site of Mre11 complex chromatin loading. This is supported by the observation that the complex localized to single-stranded DNA arising in hydroxyurea-treated cells. Although the Mre11 complex appears to function as a DNA damage sensor, limited colocalization with Brca1 or gamma-H2AX was observed, arguing that neither DNA damage nor gamma-H2AX is required for Mre11 complex chromatin loading. These data provide a potential molecular basis for promotion of sister chromatid association and recombination by the Mre11 complex as well as for ATM-Mre11 complex-dependent activation of cell cycle checkpoints.  相似文献   

10.
Thakur J  Sanyal K 《Eukaryotic cell》2011,10(10):1295-1305
A fungus-specific outer kinetochore complex, the Dam1 complex, is essential in Saccharomyces cerevisiae, nonessential in fission yeast, and absent from metazoans. The reason for the reductive evolution of the functionality of this complex remains unknown. Both Candida albicans and Schizosaccharomyces pombe have regional centromeres as opposed to the short-point centromeres of S. cerevisiae. The interaction of one microtubule per kinetochore is established both in S. cerevisiae and C. albicans early during the cell cycle, which is in contrast to the multiple microtubules that bind to a kinetochore only during mitosis in S. pombe. Moreover, the Dam1 complex is associated with the kinetochore throughout the cell cycle in S. cerevisiae and C. albicans but only during mitosis in S. pombe. Here, we show that the Dam1 complex is essential for viability and indispensable for proper mitotic chromosome segregation in C. albicans. The kinetochore localization of the Dam1 complex is independent of the kinetochore-microtubule interaction, but the function of this complex is monitored by a spindle assembly checkpoint. Strikingly, the Dam1 complex is required to prevent precocious spindle elongation in premitotic phases. Thus, constitutive kinetochore localization associated with a one-microtubule-one kinetochore type of interaction, but not the length of a centromere, is correlated with the essentiality of the Dam1 complex.  相似文献   

11.
12.
On primary culture of hepatocytes it is shown, that a complex cortisol-apolipoprotein A-I did not change rate of biosynthesis DNA and protein, whereas the complex tetrahydrocortisol-apolipoprotein A-I (THC-apoA-I) essentially raised rate of incorporation 3H-thymidine in DNA and 14C-leucine into protein. By a method of small-angle X-ray scattering it is shown, that appreciable interaction with eukariotic DNA is marked only in case of use of a complex THC-apoA-I, thus there is local fusion of DNA. The most probable region of interaction of the given complex with DNA is repetition (GCC)n the type, included in structure of many genes eukariot, including the human. It is synthesized oligonucleotid (duplex) of this type. It is shown, that at his interaction with complex THC-apoA-I there is a formation of more difficult complex, which breaks up with formation of complementary chains of oligonucleotides. The last also enter interaction with complex THC-apoA-I. It is given of kinetic this multiphasic process. Interaction of a complex cortisol-anoA-I with a duplex is less specific and does not result reduce in decay of the duplex and in formation of complementary oligonucleotides.  相似文献   

13.
Respiratory chains of bacteria and mitochondria contain closely related forms of the proton-pumping NADH:ubiquinone oxidoreductase, or complex I. The bacterial complex I consists of 14 subunits, whereas the mitochondrial complex contains some 25 extra subunits in addition to the homologues of the bacterial subunits. One of these extra subunits with a molecular mass of 40 kDa belongs to a heterogeneous family of reductases/isomerases with a conserved nucleotide binding site. We deleted this subunit in Neurospora crassa by gene disruption. In the mutant nuo 40, a complex I lacking the 40 kDa subunit is assembled. The mutant complex I does not contain tightly bound NADPH present in wild-type complex I. This NADPH cofactor is not connected to the respiratory electron pathway of complex I. The mutant complex has normal NADH dehydrogenase activity and contains the redox groups known for wild-type complex I, one flavin mononucleotide and four iron-sulfur clusters detectable by electron paramagnetic resonance spectroscopy. In the mutant complex these groups are all readily reduced by NADH. However, the mutant complex is not capable of reducing ubiquinone. A recently described redox group identified in wild-type complex I by UV-visible spectroscopy is not detectable in the mutant complex. We propose that the reductase/isomerase subunit with its NADPH cofactor takes part in the biosynthesis of this new redox group.  相似文献   

14.
The translocase of the outer mitochondrial membrane (TOM complex) is the general entry site for newly synthesized proteins into mitochondria. This complex is essential for the formation and maintenance of mitochondria. Here, we report on the role of the integral outer membrane protein, Mim1 (mitochondrial import), in the biogenesis of mitochondria. Depletion of Mim1 abrogates assembly of the TOM complex and results in accumulation of Tom40, the principal constituent of the TOM complex, as a low-molecular-mass species. Like all mitochondrial beta-barrel proteins, the precursor of Tom40 is inserted into the outer membrane by the TOB complex. Mim1 is likely to be required for a step after this TOB-complex-mediated insertion. Mim1 is a constituent of neither the TOM complex nor the TOB complex; rather, it seems to be a subunit of another, as yet unidentified, complex. We conclude that Mim1 has a vital and specific function in the assembly of the TOM complex.  相似文献   

15.
The addition of chlorite to horse-radish peroxidase appears to initiate the same sequence of reactions as peroxide: the formation of a complex I followed by its transition to complex II. However, the amount of free chlorite or hypochlorite required to give half-maximal formation of the peroxidase complexes is over 100 times the amount of free hydrogen peroxide that is required. Complex I is not observed at an appreciable concentration because chlorite also acts as an electron donor (from which chlorine dioxide is formed) and accelerates the transition from complex I to II. The complex II formed from chlorite has the same reactivity toward nitrite as does that formed from peroxide, and the complexes may be considered to be identical. With hypochlorite, the formation of a complex I is readily observed, as is its transition to complex II. An accurate evaluation of the reactivity of this complex II toward donors has not yet been obtained.  相似文献   

16.
The fluorescence of the Tb3+ complex with metaphase chromosomes of mink fibroblasts was studied. It was shown that the fluorescence intensity of this complex is 6.5 times as high as that of the Tb3+-native DNA complex. The fluorescence of the chromosome-Tb3+ complex is predominantly determined by chromosomal DNA. The high intensity of fluorescence may be due to partial disturbances in the secondary structure of DNA during folding of the metaphasic chromosome.  相似文献   

17.
In virtue of analysis of data on the interaction of tricarboxylic acid cycle enzymes with the mitochondrial inner membrane and data on the enzyme-enzyme interactions, the spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon) is proposed. The alpha-ketoglutarate dehydrogenase complex, adsorbed on the mitochondrial inner membrane along one of its 3-fold symmetry axes, plays the key role in the formation of metabolon. Two association sites of the alpha-ketoglutarate dehydrogenase complex located on opposite sides of the complex participate in the interaction with the membrane. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleosidediphosphate kinase. Succinate dehydrogenase, the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of metabolon on the membrane. The molecular mass of the complex (ignoring succinate dehydrogenase) is of 8.10(6) daltons. The metabolon symmetry corresponds to the D3 point symmetry group. It is supposed, that the tricarboxylic acid cycle enzyme complex interacts with other multienzyme complexes of the matrix and the electron transfer chain.  相似文献   

18.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex.  相似文献   

19.
A new property of a heat-inducible heat shock protein (Hsp) 70.1 that it forms a complex with acidic lipids was first demonstrated. Based on the behaviors of the complexes on the native PAGE, the acidic lipid/Hsp70.1 complexes are categorized into two groups. The first group is the sulfatide-induced large-sized complex, which stays on the gel top on the native PAGE. Only the N-terminal ATPase domain is responsible for the complex formation. The second group is the ganglioside-induced complex, which is diffused in the resolution gel on the native PAGE. Both the N-terminal ATPase and the C-terminal peptide-binding domains are involved in the complex formation. No complex is formed by neutral glyco- and phospholipids. The complex formation with the acidic glyco- and phospholipids implicates the various functions of Hsp70 on the membrane surfaces.  相似文献   

20.
A single-molecule analysis was applied to study the dynamics of synaptic and presynaptic DNA-protein complexes (binding of two DNA and one DNA duplex, respectively). In the approach used in this study, the protein was tethered to a surface, allowing a freely diffusing fluorescently labeled DNA to bind to the protein, thus forming a presynaptic complex. The duration of fluorescence burst is the measure of the characteristic lifetime of the complex. To study the formation of the synaptic complex, the two SfiI-bound duplexes with the labeled donor and acceptor were used. The synaptic complex formation by these duplexes was detected by the fluorescence resonance energy transfer approach. The duration of the fluorescence resonance energy transfer burst is the measure of the characteristic lifetime of the synaptic complex. We showed that both synaptic and presynaptic complexes have characteristic dissociation times in the range of milliseconds, with the synaptic SfiI-DNA complex having the shorter dissociation time. Comparison of the off-rate data for the synaptic complex with the rate of DNA cleavage led to the hypothesis that the complex is very dynamic, so the formation of an enzymatically active synaptic complex is a rather rare event in these series of conformational transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号