首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Structural data of integrin αIIbβ3 have been interpreted as supporting a model in which: 1) the receptor exists primarily in a “bent,” low affinity conformation on unactivated platelets and 2) activation induces an extended, high affinity conformation prior to, or following, ligand binding. Previous studies found that “clasping” the αIIb head domain to the β3 tail decreased fibrinogen binding. To study the role of αIIb extension about the genu, we introduced a disulfide “clamp” between the αIIb thigh and calf-1 domains. Clamped αIIbβ3 had markedly reduced ability to bind the large soluble ligands fibrinogen and PAC-1 when activated with monoclonal antibody (mAb) PT25-2 but not when activated by Mn2+ or by coexpressing the clamped αIIb with a β3 subunit containing the activating mutation N339S. The clamp had little effect on the binding of the snake venom kistrin (Mr 7,500) or αIIbβ3-mediated adhesion to immobilized fibrinogen, but it did diminish the enhanced binding of mAb AP5 in the presence of kistrin. Collectively, our studies support a role for αIIb extension about the genu in the binding of ligands of 340,000 and 900,000 Mr with mAb-induced activation but indicate that it is not an absolute requirement. Our data are consistent with αIIb extension resulting in increased access to the ligand-binding site and/or facilitating the conformational change(s) in β3 that affect the intrinsic affinity of the binding pocket for ligand.  相似文献   

2.
α-Synuclein is abundantly present in Lewy bodies, characteristic of Parkinson's disease. Its exact physiological role has yet to be determined, but mitochondrial membrane binding is suspected to be a key aspect of its function. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling allowed for a locally resolved analysis of the protein-membrane binding affinity for artificial phospholipid membranes, supported by a study of binding to isolated mitochondria. The data reveal that the binding affinity of the N-terminus is nonuniform.  相似文献   

3.
Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.  相似文献   

4.
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

5.
The currently available antithrombotic agents target the interaction of platelet integrin αIIbβ3 (GPIIb-IIIa) with fibrinogen during platelet aggregation. Platelets also bind fibrin formed early during thrombus growth. It was proposed that inhibition of platelet-fibrin interactions may be a necessary and important property of αIIbβ3 antagonists; however, the mechanisms by which αIIbβ3 binds fibrin are uncertain. We have previously identified the γ370–381 sequence (P3) in the γC domain of fibrinogen as the fibrin-specific binding site for αIIbβ3 involved in platelet adhesion and platelet-mediated fibrin clot retraction. In the present study, we have demonstrated that P3 can bind to several discontinuous segments within the αIIb β-propeller domain of αIIbβ3 enriched with negatively charged and aromatic residues. By screening peptide libraries spanning the sequence of the αIIb β-propeller, several sequences were identified as candidate contact sites for P3. Synthetic peptides duplicating these segments inhibited platelet adhesion and clot retraction but not platelet aggregation, supporting the role of these regions in fibrin recognition. Mutant αIIbβ3 receptors in which residues identified as critical for P3 binding were substituted for homologous residues in the I-less integrin αMβ2 exhibited reduced cell adhesion and clot retraction. These residues are different from those that are involved in the coordination of the fibrinogen γ404–411 sequence and from auxiliary sites implicated in binding of soluble fibrinogen. These results map the binding of fibrin to multiple sites in the αIIb β-propeller and further indicate that recognition specificity of αIIbβ3 for fibrin differs from that for soluble fibrinogen.  相似文献   

6.
Integration of a protein into the endoplasmic reticulum (ER) membrane occurs through a series of multistep reactions that include targeting of ribosome-nascent polypeptide complexes to the ER, attachment of the ribosome to the protein translocation channel, lateral partitioning of α-helical transmembrane spans into the lipid bilayer, and folding of the lumenal, cytosolic and membrane-embedded domains of the protein. However, the molecular mechanisms and kinetics of these steps are still not entirely clear. To obtain a better understanding of the mechanism of membrane protein integration, we propose that it will be important to utilize in vivo experiments to examine the kinetics of membrane protein integration and in vitro experiments to characterize interactions between nascent membrane proteins, protein translocation factors and molecular chaperones.  相似文献   

7.
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.  相似文献   

8.
The effects of -bungarotoxin (-BT) on two patterns of acetylcholine (ACh)-induced response differing in desensitization rate were investigated in isolated mollusk neurons using intracellular dialysis and concentration clamping techniques. It was found that -BT depressed both types of ACh-induced response — a reversible action in the majority of experiments performed. It also exerted a blocking effect on ACh-induced currents dependent on the presence of albumin, although albumin itself produced no noticeable change in ACh-induced response. Concentration dependence of -BT-induced blockade on both types of currents evoked by 1 and 10 µM ACh was investigated. The -BT concentrations producing a 50% suppression of the current evoked by 1 µM ACh were calculated by approximating concentration plots as (13.85±1.25)×10–9 and (5.56±1.0)×10–8 g/ml for type A and B cells respectively.Institute of Experimental Biology. Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 729–735, November–December, 1989.  相似文献   

9.
10.
Single particle tracking (SPT) of transmembrane receptors in the plasma membrane often reveals heterogeneous diffusion. A thorough interpretation of the displacements requires an extensive analysis suited for discrimination of different motion types present in the data. Here the diffusion pattern of the homomeric α3-containing glycine receptor (GlyR) is analyzed in the membrane of HEK 293 cells. More specifically, the influence of the α3 RNA splice variants α3K and α3L on lateral membrane diffusion of the receptor is revealed in detail. Using a combination of ensemble and local SPT analysis, free and anomalous diffusion parameters are determined. The GlyR α3 free diffusion coefficient is found to be 0.13 ± 0.01 μm2/s and both receptor variants display confined motion. The confinement probability level and residence time are significantly elevated for the α3L variant compared to the α3K variant. Furthermore, for the α3L GlyR, the presence of directed motion was also established, with a velocity matching that of saltatory vesicular transport. These findings reveal that α3 GlyRs are prone to different types of anomalous diffusion and reinforce the role of RNA splicing in determining lateral membrane trafficking.  相似文献   

11.
Summary A quantitative histochemical method to determine the Km and Vmax of -glucosidases in the intestinal epithelium without disruption of the cellular structure is described. 2-Naphthyl--D-glucoside was used as substrate and hexazonium-p-rosaniline as coupling agent. Using a Leitz MPV2 microdensitometer and a field measuring 4×4 m, and reading the test samples against a blank focused on the lamina propria, we observed that the intensity of the colour was a linear function of both the incubation time up to 20 min, and the thickness of the slice up to 20 m. The ratio between the extinction at the absorption maximum and at a second wavelength was constant, whatever the intensity of the colour.By determining the relationship between the extinction and the substrate concentration under standard conditions (slice thickness of 10 m and incubation time of 10 min), we obtained a saturation curve described by a Km of 0.68±0.038 mM and a Vmax of 1.41±0.039 A480·10–2·m–1·min–1. When the hydrolysis of the same substrate by a homogenate of jejunal mucosa was examined biochemically under comparable conditions, a Km of 0.64±0.012 mM and a Vmax of 57.3±0.70 mU/mg protein were obtained. When the natural substrate, sucrose, was used in the biochemical study, a Km of 15±3.5 mM and a Vmax of 149±24.7 mU/mg protein were obtained.These experiments demonstrate that the kinetic constants of enzyme reactions can be assessed with equal accuracy on histochemical sections as in tissue homogenates.  相似文献   

12.
Talins and kindlins bind to the integrin β3 cytoplasmic tail and both are required for effective activation of integrin αIIbβ3 and resulting high-affinity ligand binding in platelets. However, binding of the talin head domain alone to β3 is sufficient to activate purified integrin αIIbβ3 in vitro. Since talin is localized to the cytoplasm of unstimulated platelets, its re-localization to the plasma membrane and to the integrin is required for activation. Here we explored the mechanism whereby kindlins function as integrin co-activators. To test whether kindlins regulate talin recruitment to plasma membranes and to αIIbβ3, full-length talin and kindlin recruitment to β3 was studied using a reconstructed CHO cell model system that recapitulates agonist-induced αIIbβ3 activation. Over-expression of kindlin-2, the endogenous kindlin isoform in CHO cells, promoted PAR1-mediated and talin-dependent ligand binding. In contrast, shRNA knockdown of kindlin-2 inhibited ligand binding. However, depletion of kindlin-2 by shRNA did not affect talin recruitment to the plasma membrane, as assessed by sub-cellular fractionation, and neither over-expression of kindlins nor depletion of kindlin-2 affected talin interaction with αIIbβ3 in living cells, as monitored by bimolecular fluorescence complementation. Furthermore, talin failed to promote kindlin-2 association with αIIbβ3 in CHO cells. In addition, purified talin and kindlin-3, the kindlin isoform expressed in platelets, failed to promote each other's binding to the β3 cytoplasmic tail in vitro. Thus, kindlins do not promote initial talin recruitment to αIIbβ3, suggesting that they co-activate integrin through a mechanism independent of recruitment.  相似文献   

13.
Membrane proteins serve as cellular gatekeepers, regulators, and sensors. Prior studies have explored the functional breadth and evolution of proteins and families of particular interest, such as the diversity of transport-associated membrane protein families in prokaryotes and eukaryotes, the composition of integral membrane proteins, and family classification of all human G-protein coupled receptors. However, a comprehensive analysis of the content and evolutionary associations between membrane proteins and families in a diverse set of genomes is lacking. Here, a membrane protein annotation pipeline was developed to define the integral membrane genome and associations between 21,379 proteins from 34 genomes; most, but not all of these proteins belong to 598 defined families. The pipeline was used to provide target input for a structural genomics project that successfully cloned, expressed, and purified 61 of our first 96 selected targets in yeast. Furthermore, the methodology was applied (1) to explore the evolutionary history of the substrate-binding transmembrane domains of the human ABC transporter superfamily, (2) to identify the multidrug resistance-associated membrane proteins in whole genomes, and (3) to identify putative new membrane protein families.  相似文献   

14.
15.
While overall hydrophobicity is generally recognized as the main characteristic of transmembrane (TM) α-helices, the only membrane system for which there are detailed quantitative data on how different amino acids contribute to the overall efficiency of membrane insertion is the endoplasmic reticulum (ER) of eukaryotic cells. Here, we provide comparable data for TIM23-mediated membrane protein insertion into the inner mitochondrial membrane of yeast cells. We find that hydrophobicity and the location of polar and aromatic residues are strong determinants of membrane insertion. These results parallel what has been found previously for the ER. However, we see striking differences between the effects elicited by charged residues flanking the TM segments when comparing the mitochondrial inner membrane and the ER, pointing to an unanticipated difference between the two insertion systems.  相似文献   

16.
The novel RGDF mimetics were synthesized with the use of 4-(1,2,3,4-tetrahydroisoquinoline-7-yl)amino-4-oxobutyric or 5-(1,2,3,4-tetrahydroisoquinoline-7-yl)amino-5-oxopentanoic acids as a surrogate of Arg-Gly motif. The synthesized compounds have demonstrated a high potency to inhibit platelet aggregation in vitro and to block FITC-Fg binding to αIIbβ3 on washed human platelets.  相似文献   

17.
NMR spectroscopy has established itself as one of the main techniques for the structural study of integral membrane proteins. Remarkably, over the last few years, substantial progress has been achieved in the structure determination of increasingly complex polytopical α-helical membrane proteins, with their size approaching ~100kDa. Such advances are the result of significant improvements in NMR methodology, sample preparation and powerful selective isotope labelling schemes. We review the requirements facilitating such work based on the more recent solution NMR studies of α-helical proteins. While the majority of such studies still use detergent-solubilized proteins, alternative more native-like lipid-based media are emerging. Recent interaction, dynamics and conformational studies are discussed that cast a promising light on the future role of NMR in this important and exciting area.  相似文献   

18.
Wang  Chengqi  Li  Shuyan  Xi  Lili  Liu  Huanxiang  Yao  Xiaojun 《Amino acids》2011,40(3):991-1002
Predicting the burial status (the residue exposure to the lipid bilayer or buried within the protein core) of transmembrane (TM) residues of α-helix membrane protein (αHMP) is of great importance for genome-wide annotation and for experimental researchers to elucidate diverse physiological processes. In this work, we developed a new computational model that can be used for predicting the burial status of TM residues of αHMP. By incorporating physicochemical scales and conservation index, an efficient prediction model using least squares support vector machine (LS-SVM) was developed. The model was developed from 43 protein chains and its prediction ability was evaluated by an independent test set of other non-redundant ten protein chains. The prediction accuracy of our method was much better than the results of the reported works. Our results demonstrate that the LS-SVM prediction model incorporating structural and physicochemical features derived from sequence information could greatly improve the prediction accuracy.  相似文献   

19.
Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time. We found that fibrinogen-reactive αIIbβ3 pre-exists in at least two states that differ in their zero force on-rates (kon1 = 1.4 × 10−4 and kon2 = 2.3 × 10−4 μm2/s), off-rates (koff1 = 2.42 and koff2 = 0.60 s−1), and dissociation constants (Kd1 = 1.7 × 104 and Kd2 = 2.6 × 103 μm−2). The integrin activator Mn2+ changed the on-rates and affinities (Kd1 = 5 × 104 and Kd2 = 0.3 × 103 μm−2) but did not affect the off-rates. The strength of αIIbβ3-fibrinogen interactions was time-dependent due to a progressive increase in the fraction of the high affinity state of the αIIbβ3-fibrinogen complex characterized by a faster on-rate. Upon Mn2+-induced integrin activation, the force-dependent off-rates decrease while the complex undergoes a conformational transition from a lower to higher affinity state. The results obtained provide quantitative estimates of the two-dimensional kinetic rates for the low and high affinity αIIbβ3 and fibrinogen interactions at the single molecule level and offer direct evidence for the time- and force-dependent changes in αIIbβ3 conformation and ligand binding activity, underlying the dynamics of fibrinogen-mediated platelet adhesion and aggregation.  相似文献   

20.
The hydrophobic organization of the intramembraneα-helical bundle in bacteriorhodopsin (BRh) was assessed based on a new approach to characterization of spatial hydrophobic properties of transmembrane (TM)α-helical peptides. The method employs two independent techniques: Monte Carlo simulations of nonpolar solvent around TM peptides and analysis of molecular hydrophobicity potential on their surfaces. The results obtained by the two methods agree with each other and permit precise hydrophobicity mapping of TM peptides. Superimposition of such data on the experimentally derived spatial model of the membrane moiety together with 2D maps of hydrophobic hydrophilic contacts provide considerable insight into the hydrophobic organization of BRh. The helix bundle is stabilized to a large extent by hydrophobic interactions between helices—neighbors in the sequence of BRh, by long-range interactions in helix pairs C-E, C-F, and C-G, and by nonpolar contracts between retinal and helices C, D, E, F. Unlike globular proteins, no polar contacts between residues distantly separated in the sequence of BRh were found in the bundle. One of the most striking results of this study is the finding that the hydrophobic organization of BRh is significantly different from those in bacterial photoreaction centers. Thus, TMα-helices in BRh expose their most nonpolar sides to the bilayer as well as to the neighboring helices and to the interior of the bundle. Some of them contact lipids with their relatively hydrophilic surfaces. No correlation was found between disposition of the most hydrophobic and the most variable sides of the TM helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号