首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment.  相似文献   

2.

Background

RNA secondary structure is highly conserved throughout evolution. The higher order structure is fundamental in establishing important structure-function relationships. Nucleotide sequences from ribosomal RNA (rRNA) genes have made a great contribution to our understanding of Ascomycota phylogeny. However, filling the gaps between molecular phylogeny and morphological assumptions based on ascus dehiscence modes and type of fruitbodies at the higher level classification of the phylum remains an unfulfilled task faced by mycologists.

Methodology/Principal Findings

We selected some major groups of Ascomycota to view their phylogenetic relationships based on analyses of rRNA secondary structure. Using rRNA secondary structural information, here, we converted nucleotide sequences into the structure ones over a 20-symbol code. Our structural analyses together with ancestral character state reconstruction produced reasonable phylogenetic position for the class Geoglossomycetes as opposed to the classic nucleotide analyses. Judging from the secondary structure analyses with consideration of mode of ascus dehiscence and the ability of forming fruitbodies, we draw a clear picture of a possible evolutionary route for fungal asci and some major groups of fungi in Ascomycota. The secondary structure trees show a more reasonable phylogenetic position for the class Geoglossomycetes.

Conclusions

Our results illustrate that asci lacking of any dehiscence mechanism represent the most primitive type. Passing through the operculate and Orbilia-type asci, bitunicate asci occurred. The evolution came to the most advanced inoperculate type. The ascus-producing fungi might be derived from groups lacking of the capacity to form fruitbodies, and then evolved multiple times. The apothecial type of fruitbodies represents the ancestral state, and the ostiolar type is advanced. The class Geoglossomycetes is closely related to Leotiomycetes and Sordariomycetes having a similar ascus type other than it was originally placed based on nucleotide sequence analyses.  相似文献   

3.

Background

The 16S rRNA gene-based amplicon sequencing analysis is widely used to determine the taxonomic composition of microbial communities. Once the taxonomic composition of each community is obtained, evolutionary relationships among taxa are inferred by a phylogenetic tree. Thus, the combined representation of taxonomic composition and phylogenetic relationships among taxa is a powerful method for understanding microbial community structure; however, applying phylogenetic tree-based representation with information on the abundance of thousands or more taxa in each community is a difficult task. For this purpose, we previously developed the tool VITCOMIC (VIsualization tool for Taxonomic COmpositions of MIcrobial Community), which is based on the genome-sequenced microbes’ phylogenetic information. Here, we introduce VITCOMIC2, which incorporates substantive improvements over VITCOMIC that were necessary to address several issues associated with 16S rRNA gene-based analysis of microbial communities.

Results

We developed VITCOMIC2 to provide (i) sequence identity searches against broad reference taxa including uncultured taxa; (ii) normalization of 16S rRNA gene copy number differences among taxa; (iii) rapid sequence identity searches by applying the graphics processing unit-based sequence identity search tool CLAST; (iv) accurate taxonomic composition inference and nearly full-length 16S rRNA gene sequence reconstructions for metagenomic shotgun sequencing; and (v) an interactive user interface for simultaneous representation of the taxonomic composition of microbial communities and phylogenetic relationships among taxa. We validated the accuracy of processes (ii) and (iv) by using metagenomic shotgun sequencing data from a mock microbial community.

Conclusions

The improvements incorporated into VITCOMIC2 enable users to acquire an intuitive understanding of microbial community composition based on the 16S rRNA gene sequence data obtained from both metagenomic shotgun and amplicon sequencing.
  相似文献   

4.

Background  

Until today, analysis of 16S ribosomal RNA (rRNA) sequences has been the de-facto gold standard for the assessment of phylogenetic relationships among prokaryotes. However, the branching order of the individual phlya is not well-resolved in 16S rRNA-based trees. In search of an improvement, new phylogenetic methods have been developed alongside with the growing availability of complete genome sequences. Unfortunately, only a few genes in prokaryotic genomes qualify as universal phylogenetic markers and almost all of them have a lower information content than the 16S rRNA gene. Therefore, emphasis has been placed on methods that are based on multiple genes or even entire genomes. The concatenation of ribosomal protein sequences is one method which has been ascribed an improved resolution. Since there is neither a comprehensive database for ribosomal protein sequences nor a tool that assists in sequence retrieval and generation of respective input files for phylogenetic reconstruction programs, RibAlign has been developed to fill this gap.  相似文献   

5.

Background  

In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking.  相似文献   

6.

Background  

Results of microbial ecology studies using 16S rRNA sequence information can be deceiving due to differences in rRNA operon copy number and genome size of the detected organisms. It therefore will be useful for investigators to have a better understanding of how these two parameters differ in various organism types. In this study, the number of ribosomal operons and genome size were separately mapped onto a Bacterial phylogenetic tree.  相似文献   

7.

Background

The analysis of RNA sequences, once a small niche field for a small collection of scientists whose primary emphasis was the structure and function of a few RNA molecules, has grown most significantly with the realizations that 1) RNA is implicated in many more functions within the cell, and 2) the analysis of ribosomal RNA sequences is revealing more about the microbial ecology within all biological and environmental systems. The accurate and rapid alignment of these RNA sequences is essential to decipher the maximum amount of information from this data.

Methods

Two computer systems that utilize the Gutell lab's RNA Comparative Analysis Database (rCAD) were developed to align sequences to an existing template alignment available at the Gutell lab's Comparative RNA Web (CRW) Site. Multiple dimensions of cross-indexed information are contained within the relational database - rCAD, including sequence alignments, the NCBI phylogenetic tree, and comparative secondary structure information for each aligned sequence. The first program, CRWAlign-1 creates a phylogenetic-based sequence profile for each column in the alignment. The second program, CRWAlign-2 creates a profile based on phylogenetic, secondary structure, and sequence information. Both programs utilize their profiles to align new sequences into the template alignment.

Results

The accuracies of the two CRWAlign programs were compared with the best template-based rRNA alignment programs and the best de-novo alignment programs. We have compared our programs with a total of eight alternative alignment methods on different sets of 16S rRNA alignments with sequence percent identities ranging from 50% to 100%. Both CRWAlign programs were superior to these other programs in accuracy and speed.

Conclusions

Both CRWAlign programs can be used to align the very extensive amount of RNA sequencing that is generated due to the rapid next-generation sequencing technology. This latter technology is augmenting the new paradigm that RNA is intimately implicated in a significant number of functions within the cell. In addition, the use of bacterial 16S rRNA sequencing in the identification of the microbiome in many different environmental systems creates a need for rapid and highly accurate alignment of bacterial 16S rRNA sequences.
  相似文献   

8.

Background  

The phylogeny of Eumalacostraca (Crustacea) remains elusive, despite over a century of interest. Recent morphological and molecular phylogenies appear highly incongruent, but this has not been assessed quantitatively. Moreover, 18S rRNA trees show striking branch length differences between species, accompanied by a conspicuous clustering of taxa with similar branch lengths. Surprisingly, previous research found no rate heterogeneity. Hitherto, no phylogenetic analysis of all major eumalacostracan taxa (orders) has either combined evidence from multiple loci, or combined molecular and morphological evidence.  相似文献   

9.
The phylogeny of Anisoptera, dragonflies in the strict sense, has proven to be notoriously difficult to resolve. Based on morphological characters, several recent publications dealing with the phylogeny of dragonflies proposed contradicting inter- and intrafamily relationships. We explored phylogenetic information content of mitochondrial large-subunit (LSU) and small-subunit (SSU) ribosomal gene fragments for these systematic problems. Starting at published universal primers, we developed primer sets suitable for amplifying large parts of the LSU and SSU rRNA genes within dragonflies. These fragments turned out to harbor sufficient phylogenetic information to satisfyingly resolve intrafamily relationships, but they contain insufficient phylogenetic structure to permit reliable conclusions about several interfamily relationships. We demonstrate that decay of phylogenetic signal progresses from intrafamily to interfamily to outgroup relationships and is correlated with an increase of genetic distances. As expected, signal decay is most pronounced in fast-changing sites. Additionally, base composition among fast-changing sites significantly deviates from the expected homogeneity. Homogeneity of base composition among all included taxa was restored only after removing fast-changing sites from the data set. The molecular data tentatively support interfamily relationships proposed by the most recent publication based on morphological characters of fossil and extant dragonflies.  相似文献   

10.
Phylogenetic studies of ciliates are mainly based on the primary structure information of the nuclear genes. Some regions of the small subunit ribosomal RNA (SSU‐rRNA) gene have distinctive secondary structures, which have demonstrated value as phylogenetic/taxonomic characters. In the current work, we predict the secondary structures of four variable regions (V2, V4, V7 and V9) in the SSU‐rRNA gene of 45 urostylids. Structure comparisons indicate that the V4 region is the most effective in revealing interspecific relationships, while the V9 region appears suitable at the family level or higher. The V2 region also offers some taxonomic information, but is too conserved to reflect phylogenetic relationships at the family or lower level, at least for urostylids. The V7 region is the least informative. We constructed several phylogenetic trees, based on the primary sequence alignment and based on an improved alignment according to the secondary structures. The results suggest that including secondary structure information in phylogenetic analyses provides additional insights into phylogenetic relationships. Using urostylid ciliates as an example, we show that secondary structure information results in a better understanding of their relationships, for example generic relationships within the family Pseudokeronopsidae.  相似文献   

11.

Background  

Most phylogenetic studies using current methods have focused on primary DNA sequence information. However, RNA secondary structures are particularly useful in systematics because they include characteristics, not found in the primary sequence, that give "morphological" information. Despite the number of recent molecular studies on octocorals, there is no consensus opinion about a region that carries enough phylogenetic resolution to solve intrageneric or close species relationships. Moreover, intrageneric morphological information by itself does not always produce accurate phylogenies; intra-species comparisons can reveal greater differences than intra-generic ones. The search for new phylogenetic approaches, such as by RNA secondary structure analysis, is therefore a priority in octocoral research.  相似文献   

12.
The complete 12S ribosomal RNA(rRNA) sequences from 23 gobioid species and nine diverse assortments of other fish species were employed to establish a core secondary structure model for fish 12S rRNA. Of the 43 stems recognized, 41 were supported by at least some compensatory evidence among vertebrates. The rates of nucleotide substitution were lower in stems than in loops. This may produce less phylogenetic information in stems when recently diverged taxa are compared. An analysis of compensatory substitution shows that the percentage of covariation is 68%, and the weighting factor for phylogenetic analyses to account for the dependence of mutations should be 0.66. Different stem-loop weighting schemes applied to the analyses of phylogenetic relationships of the Gobioidei indicate that down-weighting paired regions because of nonindependence could not improve the present phylogenetic analysis. A biased nucleotide composition (adenine% [A%] > thymine% [T%], cytosine% [C%] > guanine% [G%]) in the loop regions was also observed in the mammalian counterpart. The excess of A and C in the loop regions may be because of the asymmetric mechanism of mtDNA replication, which leads to the spontaneous deamination of C and A. This process may also be responsible for a transition-transversion bias and the patterns of nucleotide substitutions in both stems and loops.  相似文献   

13.

Background  

Conformational flexibility in structured RNA frequently is critical to function. The 30S ribosomal subunit exists in different conformations in different functional states due to changes in the central part of the 16S rRNA. We are interested in evaluating the factors that might be responsible for restricting flexibility to specific parts of the 16S rRNA using biochemical data obtained from the 30S subunit in solution. This problem was approached taking advantage of the observation that there must be a high degree of conformational flexibility at sites where UV photocrosslinking occurs and a lack of flexibility inhibits photoreactivity at many other sites that are otherwise suitable for reaction.  相似文献   

14.
The 18S ribosomal RNAs of 21 tetrapods were sequenced and aligned with five published tetrapod sequences. When the coelacanth was used as an outgroup, Lissamphibia (living amphibians) and Amniota (amniotes) were found to be statistically significant monophyletic groups. Although little resolution was obtained among the lissamphibian taxa, the amniote sequences support a sister-group relationship between birds and mammals. Portions of the 28S ribosomal RNA (rRNA) molecule in 11 tetrapods also were sequenced, although the phylogenetic results were inconclusive. In contrast to previous studies, deletion or down- weighting of base-paired sites were found to have little effect on phylogenetic relationships. Molecular evidence for amniote relationships is reviewed, showing that three genes (beta-hemoglobin, myoglobin, and 18S rRNA) unambiguously support a bird-mammal relationship, compared with one gene (histone H2B) that favors a bird- crocodilian clade. Separate analyses of four other genes (alpha- crystallin A, alpha-hemoglobin, insulin, and 28S rRNA) and a combined analysis of all sequence data are inconclusive, in that different groups are defined in different analyses and none are strongly supported. It is suggested that until sequences become available from a broader array of taxa, the molecular evidence is best evaluated at the level of individual genes, with emphasis placed on those studies with the greatest number of taxa and sites. When this is done, a bird-mammal relationship is most strongly supported. When regarded in combination with the morphological evidence for this association, it must be considered at least as plausible as a bird-crocodilian relationship.   相似文献   

15.
Tracing the evolution of RNA structure in ribosomes   总被引:7,自引:0,他引:7       下载免费PDF全文
The elucidation of ribosomal structure has shown that the function of ribosomes is fundamentally confined to dynamic interactions established between the RNA components of the ribosomal ensemble. These findings now enable a detailed analysis of the evolution of ribosomal RNA (rRNA) structure. The origin and diversification of rRNA was studied here using phylogenetic tools directly at the structural level. A rooted universal tree was reconstructed from the combined secondary structures of large (LSU) and small (SSU) subunit rRNA using cladistic methods and considerations in statistical mechanics. The evolution of the complete repertoire of structural ribosomal characters was formally traced lineage-by-lineage in the tree, showing a tendency towards molecular simplification and a homogeneous reduction of ribosomal structural change with time. Character tracing revealed patterns of evolution in inter-subunit bridge contacts and tRNA-binding sites that were consistent with the proposed coupling of tRNA translocation and subunit movement. These patterns support the concerted evolution of tRNA-binding sites in the two subunits and the ancestral nature and common origin of certain structural ribosomal features, such as the peptidyl (P) site, the functional relay of the penultimate stem helix of SSU rRNA, and other structures participating in ribosomal dynamics. Overall results provide a rare insight into the evolution of ribosomal structure.  相似文献   

16.

Background

The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons.

Methodology/Principal Findings

Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4%) genomes (mean 0.40%, range 0.01%–4.04%). Significant (1.17%–4.04%) intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition). In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS), ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes.

Conclusions/Significance

These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.  相似文献   

17.

Background

Comparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting with the sequences organized into a database management system and aligned to reveal their higher-order structure, and patterns of conservation and variation for organisms that span the phylogenetic tree, has been collected and analyzed. This type of information can be fundamental for and have an influence on the study of phylogenetic relationships, RNA structure, and the melding of these two fields.

Results

We have prepared a large web site that disseminates our comparative sequence and structure models and data. The four major types of comparative information and systems available for the three ribosomal RNAs (5S, 16S, and 23S rRNA), transfer RNA (tRNA), and two of the catalytic intron RNAs (group I and group II) are: (1) Current Comparative Structure Models; (2) Nucleotide Frequency and Conservation Information; (3) Sequence and Structure Data; and (4) Data Access Systems.

Conclusions

This online RNA sequence and structure information, the result of extensive analysis, interpretation, data collection, and computer program and web development, is accessible at our Comparative RNA Web (CRW) Site http://www.rna.icmb.utexas.edu. In the future, more data and information will be added to these existing categories, new categories will be developed, and additional RNAs will be studied and presented at the CRW Site.  相似文献   

18.
Secondary structure models are an important step for aligning sequences, understanding probabilities of nucleotide substitutions, and evaluating the reliability of phylogenetic reconstructions. A set of conserved sequence motifs is derived from comparative sequence analysis of 184 invertebrate and vertebrate taxa (including many taxa from the same genera, families, and orders) with reference to a secondary structure model for domain III of animal mitochondrial small subunit (12S) ribosomal RNA. A template is presented to assist with secondary structure drawing. Our model is similar to previous models but is more specific to mitochondrial DNA, fitting both invertebrate and vertebrate groups, including taxa with markedly different nucleotide compositions. The second half of the domain III sequence can be difficult to align precisely, even when secondary structure information is considered. This is especially true for comparisons of anciently diverged taxa, but well-conserved motifs assist in determining biologically meaningful alignments. Patterns of conservation and variability in both paired and unpaired regions make differential phylogenetic weighting in terms of "stems" and "loops" unsatisfactory. We emphasize looking carefully at the sequence data before and during analyses, and advocate the use of conserved motifs and other secondary structure information for assessing sequencing fidelity.   相似文献   

19.
20.

Background  

In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号