首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

A non-adaptive radiation triggered by sexual selection resulted in ten endemic land snail species of the genus Xerocrassa on Crete. Only five of these species and a more widespread species are monophyletic in a mitochondrial gene tree. The reconstruction of the evolutionary history of such closely related species can be complicated by incomplete lineage sorting, introgression or inadequate taxonomy. To distinguish between the reasons for the nonmonophyly of several species in the mitochondrial gene tree we analysed nuclear AFLP markers.  相似文献   

2.

Background  

Leptospira is the causative genus of the disease, leptospirosis. Species identification of pathogenic Leptospira in the past was generally performed by either DNA-DNA hybridisation or 16s rRNA gene sequencing. Both methods have inherent disadvantages such as the need for radio-labelled isotopes or significant homology between species. A conventional and real-time PCR amplification and sequencing method was developed for an alternate gene target: DNA gyrase subunit B (gyrB). Phylogenetic comparisons were undertaken between pathogenic Leptospira 16srRNA and gyrB genes using clustering and minimum evolution analysis. In addition 50 unidentified Leptospira isolates were characterised by gyrB sequencing and compared with conventional 16s rRNA sequencing.  相似文献   

3.

Aim

How species respond to ongoing climate change has been a hot research topic, especially with the controversy in shifting range (movement) or persisting in local habitat (in situ) as the primary response. Assessing the relative roles of range shifts, phenotypic plasticity and genetic adaptation helps us predict the evolutionary fate of species. We aim to explore the evolutionary strategies of plants under climate change from a keystone herb in alpine ecosystems, Mirabilis himalaica, along its elevational gradient.

Location

Himalaya-Hengduan Mountains, China.

Methods

We combined evidence from population genomics and ecological data in both space and time to investigate the state of “staying” or “moving”. We identified migration events by assessing historical and contemporary gene flow and changes in species distribution. Morphological variation was compared by measuring five traits using specimen data. Moreover, we explored climate-driven genetic variation and local selection regimes acting on populations in the alpine landscape along an elevational gradient.

Results

Our results argue that staying in situ by morphological variation and local genetic evolution rather than range shifting plays an important role in M. himalaica response to climate change. We first found trace evidence of upward or climatic-driven shifting along an elevational gradient, although asymmetric gene flow was restricted within microenvironments of mid-elevational populations. Furthermore, morphological variation comparisons revealed clinal variation, as resource allocation showed a declining pattern in vegetative growth but increased reproductive growth with increasing elevation. Outlier tests and environment association analyses indicated adaptative loci primarily related to thermal-driven selection and continuous adaptations to high elevation in the Himalaya-Hengduan Mountains.

Main Conclusions

Our findings show M. himalaica may persist in local habitats rather than shifting range under climate change, exhibiting a low risk of genomic vulnerability in current habitats. This study has important implications in improving our understanding of the evolutionary response in alpine plants to climate change.  相似文献   

4.

Background  

FAE1 (fatty acid elongase1) is the key gene in the control of erucic acid synthesis in seeds of Brassica species. Due to oil with low erucic acid (LEA) content is essential for human health and not enough LEA resource could be available, thus new LEA genetic resources are being sought for Brassica breeding. EcoTILLING, a powerful genotyping method, can readily be used to identify polymorphisms in Brassica.  相似文献   

5.

Question

Anthropogenic edges caused by transport infrastructure such as dirt roads and trails (also known as Soft Linear Developments; SLD) are pervasive in almost every terrestrial ecosystem. Revegetating these edges may reduce some of their negative effects, such as their permeability to biological invasions and detrimental effects on wildlife, potentially becoming suitable habitat for a broad range of species. Selecting species with low post‐dispersal seed predation rates may improve the effectiveness of revegetation programmes.

Location

Mediterranean scrublands in SW Spain.

Methods

We made offerings of a total of 16,000 seeds of eight species of fleshy‐fruit shrubs both along SLD edges and scrubland interiors in two independent blocks in each of three distant locations. Using four types of selective enclosure, we assessed the relative contribution of three seed predator guilds (ants, rodents and birds) to seed predation rates both along SLD edges and scrubland interiors.

Results

The effects of anthropogenic edges on seed predation rates were species‐specific. The large and hard‐seeded species Chamaerops humilis was not predated at all. Juniperus phoenicea and Corema album seeds had higher predation rates in scrubland interiors than in edges. The small‐seeded Rubus ulmifolius experienced relatively low seed predation rates compared to the other species. Predation rates for this species were higher along SLD edges than in scrubland interiors. Ants were the main seed predators in the area, and showed marked preferences for J. macrocarpa and C. album seeds at both SLD edges and scrubland interiors.

Conclusions

Our results show the strong context‐dependency of seed predation rates in both SLD edges and scrubland interiors, and thus the importance of well spatially and temporally replicated studies. Species with large and hard seeds may be good candidates for roadside revegetation programmes. However, the relative suitability of plant species would depend on the seed predator community. Our findings confirm that studies on seed predation may help planning cost‐effective species selection for edge revegetation efforts worldwide.  相似文献   

6.

Background  

Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted.  相似文献   

7.

Background  

Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis) and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri). In this work, we examine the gene expression pattern in hybrid females of X. laevis × X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females.  相似文献   

8.

Background  

The mitochondrial DNA (mtDNA) of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin), by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans) known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea).  相似文献   

9.

Background  

The filamentous fungus Ashbya gossypii grows into a multicellular mycelium that is distinct from the unicellular morphology of its closely related yeast species. It has been proposed that genes important for cell cycle regulation play central roles for such phenotypic differences. Because A. gossypii shares an almost identical set of cell cycle genes with the typical yeast Saccharomyces cerevisiae, the differences might occur at the level of orthologous gene regulation. Codon usage patterns were compared to identify orthologous genes with different gene regulation between A. gossypii and nine closely related yeast species.  相似文献   

10.

Background  

The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), whose distributions overlap in Central and Northwestern South America.  相似文献   

11.

Background  

Lutzomyia intermedia and Lutzomyia whitmani (Diptera: Psychodidae) are important and very closely related vector species of cutaneous leishmaniasis in Brazil, which are distinguishable by a few morphological differences. There is evidence of mitochondrial introgression between the two species but it is not clear whether gene flow also occurs in nuclear genes.  相似文献   

12.

Background  

Fibroblast Growth Factors (FGF) and their receptors are well known for having major implications in cell signalling controlling embryonic development. Recently, a gene coding for a protein closely related to FGFRs (Fibroblast Growth Factor Receptors) called FGFR5 or FGFR-like 1 (FGFRL1), has been described in vertebrates. An orthologous gene was also found in the cephalochordate amphioxus, but no orthologous genes were found by the authors in other non-vertebrate species, even if a FGFRL1 gene was identified in the sea urchin genome, as well as a closely related gene, named nou-darake, in the planarian Dugesia japonica. These intriguing data of a deuterostome-specific gene that might be implicated in FGF signalling prompted us to search for putative FGFRL1 orthologues in the completely sequenced genomes of metazoans.  相似文献   

13.

Background  

Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model). However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model).  相似文献   

14.

Background  

The evolution of sex chromosomes is often accompanied by gene or chromosome rearrangements. Recently, the gene AP3 was characterized in the dioecious plant species Silene latifolia. It was suggested that this gene had been transferred from an autosome to the Y chromosome.  相似文献   

15.

Background  

Analysis of interspecific gene flow is crucial for the understanding of speciation processes and maintenance of species integrity. Oaks (genus Quercus, Fagaceae) are among the model species for the study of hybridization. Natural co-occurrence of four closely related oak species is a very rare case in the temperate forests of Europe. We used both morphological characters and genetic markers to characterize hybridization in a natural community situated in west-central Romania and which consists of Quercus robur, Q. petraea, Q. pubescen s, and Q. frainetto, respectively.  相似文献   

16.
The importance of phenotypic plasticity for successful invasion by exotic plant species has been well studied, but with contradictory and inconclusive results. However, many previous studies focused on comparisons of native and invasive species that co‐occur in a single invaded region, and thus on species with potentially very different evolutionary histories. We took a different approach by comparing three closely related Centaurea species: the highly invasive C. solstitialis, and the noninvasive but exotic C. calcitrapa and C. sulphurea. These species have overlapping distributions both in their native range of Spain and in their non‐native range of California. We collected seeds from 3 to 10 populations from each region and species and grew them in common garden greenhouse conditions to obtain an F1 generation in order to reduce maternal effects. Then, F1 seeds were grown subjected to simulated herbivory, variation in nutrient availability, and competition, to explore plasticity in the responses to these conditions. We found little variation in phenotypic plasticity among species and regions, but C. solstitialis plants from California produced more biomass in competition than their Spanish conspecifics. This species also had the highest relative growth rates when in competition and when grown under low nutrient availability. Noninvasive congeners produced intermediate or opposite patterns.  相似文献   

17.

Questions

Can hemiparasitic Rhinanthus major originating from a local population suppress the competitive clonal grass Calamagrostis epigejos and reverse its expansion in species‐rich semi‐natural grasslands? Does sowing seeds of R. major facilitate restoration of target meadow vegetation? Is R. major more beneficial for biodiversity restoration/conservation than increased mowing intensity, a conventional measure to suppress C. epigejos?

Location

?ertoryje National Nature Reserve, Bílé Karpaty (White Carpathians) Protected Landscape Area, Czech Republic.

Methods

We conducted a before‐after‐control‐impact experiment in meadow patches heavily infested by C. epigejos: eight blocks, each containing four plots with four treatment combinations: (1) traditional management, i.e. mowing once in summer, (2) mowing in summer and autumn (3) mowing in summer and seed sowing of R. major, (4) mowing in summer and autumn and seed sowing of R. major. Above‐ground biomass of C. epigejos and vegetation composition of each of the plots were monitored every year from 2013 to 2016. To assess the effects of treatments, we analysed biomass production of C. epigejos, herb layer cover and vegetation composition.

Results

Both sowing R. major and an additional autumn meadow cut significantly suppressed C. epigejos. Their effects were additive and of comparable size. Both treatments also had significant but markedly different effects on community composition. Rhinanthus major facilitated directional community composition change towards the regional Brachypodio‐Molinetum meadows. In contrast, increased mowing intensity significantly decreased frequency of threatened species, which however may have also been influenced by R. major.

Conclusions

Sowing of autochthonous R. major seeds was demonstrated as an efficient tool to suppress C. epigejos and facilitate community restoration. It can be combined with an additional meadow cut to further accelerate decline of the grass. The additional cut should however be used as a short‐term practice (1–2 years) only to minimize potential negative effects of its long‐term application on some threatened plant species. The effects of R. major are comparable to those of Rhinanthus alectorolophus reported previously. As a species occurring naturally in species‐rich dry grasslands, R. major has a broader and longer‐term application potential than R. alectorolophus in ecological restoration and conservation of these communities.  相似文献   

18.

Background  

Paulinella chromatophora is a freshwater filose amoeba with photosynthetic endosymbionts (chromatophores) of cyanobacterial origin that are closely related to free-living Prochlorococcus and Synechococcus species (PS-clade). Members of the PS-clade of cyanobacteria contain a proteobacterial form 1A RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) that was acquired by horizontal gene transfer (HGT) of a carboxysomal operon. In rDNA-phylogenies, the Paulinella chromatophore diverged basal to the PS-clade, raising the question whether the HGT occurred before or after the split of the chromatophore ancestor.  相似文献   

19.

Background  

Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study.  相似文献   

20.

Background  

Phylogenetic profiling encompasses an important set of methodologies for in silico high throughput inference of functional relationships between genes. The simplest profiles represent the distribution of gene presence-absence in a set of species as a sequence of 0's and 1's, and it is assumed that functionally related genes will have more similar profiles. The methodology has been successfully used in numerous studies of prokaryotic genomes, although its application in eukaryotes appears problematic, with reported low accuracy due to the complex genomic organization within this domain of life. Recently some groups have proposed an alternative approach based on the correlation of homologous gene group sizes, taking into account all potentially informative genetic events leading to a change in group size, regardless of whether they result in a de novo group gain or total gene group loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号