首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Recombinant antibodies are essential reagents for research, diagnostics and therapy. The well established production host Escherichia coli relies on the secretion into the periplasmic space for antibody synthesis. Due to the outer membrane of Gram-negative bacteria, only a fraction of this material reaches the medium. Recently, the Gram-positive bacterium Bacillus megaterium was shown to efficiently secrete recombinant proteins into the growth medium. Here we evaluated B. megaterium for the recombinant production of antibody fragments.  相似文献   

2.
3.
A bacterial strain with a high level of antimicrobial activity was isolated from soil and identified as Bacillus megaterium. Production of antibiotics by nine strains of this species from the collection of the State Research Institute for Genetics and Selection of Industrial Microorganisms was investigated. In submerged cultures, nine out of ten B. megaterium strains were found to produce antibacterial antibiotics differing in their spectra of action. Physicochemical characteristics of five compounds were described. Three of them belonged to peptide antibiotics. All five compounds were active against the methicillin-resistant strain Staphylococcus aureus INA 00761. Three of them were shown to be the previously undescribed compounds. Antibiotics produced by various B. megaterium strains were also active against the Leuconostoc mesenteroides VKPM B-4177 strain resistant to glycopeptide antibiotics and against gram-negative bacteria Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922.  相似文献   

4.
A newly isolated Bacillus megaterium with epoxide hydrolase activity resolved racemic glycidyl (o, m, p)-methylphenyl ethers to give enantiopure epoxides in 84–99% enantiomeric excess and with 21–73 enantiomeric ratios. The (S)-enantiomer was obtained from rac-glycidyl (o or m)-methylphenyl ether while the (R)-epoxides was obtained from glycidyl p-methylphenyl ether. The observations are explained at the level by enzyme-substrate docking studies.  相似文献   

5.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

6.
7.
The activity of ribose-5-phosphate isomerases (RpiB) from Clostridium difficile for d-ribose isomerization was optimal at pH 7.5 and 40°C, while that from Thermotoga maritima for l-talose isomerization was optimal at pH 8.0 and 70°C. C. difficile RpiB exhibited activity only with aldose substrates possessing hydroxyl groups oriented in the right-handed configuration (Fischer projections) at the C2 and C3 positions, such as d-ribose, d-allose, l-talose, l-lyxose, d-gulose, and l-mannose. In contrast, T. maritima RpiB displayed activity only with aldose substrates possessing hydroxyl groups configured the same direction at the C2, C3, and C4 positions, such as the d- and l-forms of ribose, talose, and allose.  相似文献   

8.
Clostridium difficile infection (CDI) is one of the most common nosocomial infections. Dysbiosis of the gut microbiota due to consumption of antibiotics is a major contributor to CDI. Recently, fecal microbiota transplantation (FMT) has been applied to treat CDI. However, FMT has important limitations including uncontrolled exposure to pathogens and standardization issues. Therefore, it is necessary to evaluate alternative treatment methods, such as bacteriotherapy, as well as the mechanism through which beneficial bacteria inhibit the growth of C. difficile. Here, we report bile acid-mediated inhibition of C. difficile by Bacteroides strains which can produce bile salt hydrolase (BSH). Bacteroides strains are not commonly used to treat CDI; however, as they comprise a large proportion of the intestinal microbiota, they can contribute to bile acid-mediated inhibition of C. difficile. The inhibitory effect on C. difficile growth increased with increasing bile acid concentration in the presence of Bacteroides ovatus SNUG 40239. Furthermore, this inhibitory effect on C. difficile growth was significantly attenuated when bile acid availability was reduced by cholestyramine, a bile acid sequestrant. The findings of this study are important due to the discovery of a new bacterial strain that in the presence of available bile acids inhibits growth of C. difficile. These results will facilitate development of novel bacteriotherapy strategies to control CDI.  相似文献   

9.

Background  

Clostridium difficile is the major cause of antibiotic associated diarrhoea and in recent years its increased prevalence has been linked to the emergence of hypervirulent clones such as the PCR-ribotype 027. Characteristically, C. difficile infection (CDI) occurs after treatment with broad-spectrum antibiotics, which disrupt the normal gut microflora and allow C. difficile to flourish. One of the relatively unique features of C. difficile is its ability to ferment tyrosine to para-cresol via the intermediate para-hydroxyphenylacetate (p-HPA). P-cresol is a phenolic compound with bacteriostatic properties which C. difficile can tolerate and may provide the organism with a competitive advantage over other gut microflora, enabling it to proliferate and cause CDI. It has been proposed that the hpdBCA operon, rarely found in other gut microflora, encodes the enzymes responsible for the conversion of p-HPA to p-cresol.  相似文献   

10.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

11.
A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase (CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric, high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing the genes of a strict anaerobe, Clostridium acetobutylicum.  相似文献   

12.
13.
14.
The gene encoding for B. intermedius glutamyl endopeptidase (gseBi) has previously been cloned and its nucleotide sequence analyzed. In this study, the expression of this gene was explored in protease-deficient strain B. subtilis AJ73 during stationary phase of bacterial growth. We found that catabolite repression usually involved in control of endopeptidase expression during vegetative growth was not efficient at the late stationary phase. Testing of B. intermedius glutamyl endopeptidase gene expression with B. subtilis spo0-mutants revealed slight effect of these mutations on endopeptidase expression. Activity of glutamyl endopeptidase was partly left in B. subtilis ger-mutants. Probably, gseBi expression was not connected with sporulation. This enzyme might be involved in outgrowth of the spore, when germinating endospore converts into the vegetative cell. These data suggest complex regulation of B. intermedius glutamyl endopeptidase gene expression with contribution of several regulatory systems and demonstrate changes in control of enzyme biosynthesis at different stages of growth.  相似文献   

15.

Objectives

To identify novel pullulanases from microorganisms and to investigate their biochemical characterizations.

Results

A novel pullulanase gene (BmPul) from Bacillus megaterium WW1210 was cloned and heterologously expressed in Escherichia coli. The gene has an ORF of 2814 bp encoding 937 amino acids. The recombinant pullulanase (BmPul) was purified to homogeneity and biochemically characterized. BmPul has an MW of approx. 112 kDa as indicated by SDS-PAGE. Optimum conditions were at 55 °C and pH 6.5. The enzyme was stable below 40 °C and from pH 6.5?8.5. The Km values of BmPul towards pullulan and amylopectin were 3.3 and 3.6 mg/ml, respectively. BmPul hydrolyzed pullulan to yield mainly maltotriose, indicating that it should be a type I pullulanase.

Conclusions

A novel type I pullulanase from Bacillus megaterium was identified, heterologously expressed and biochemically characterized. Its properties makes this enzyme as a good candidate for the food industry.
  相似文献   

16.
The divIVB operon of Bacillus subtilis includes the cell shape-associated mre genes, including the membrane-associated proteins MreC and MreD. TnphoA mutagenesis was utilized to analyze a topological model for MreC. MreC has a short cytoplasmic amino terminus, a single membrane-spanning domain, and a large carboxy terminal domain which lies externally to the outer leaflet of the cell membrane. Expression of the B. subtilis MreB protein, or the Mre C and D proteins, results in a morphological conversion of the Escherichia coli host cells from a rod to a roughly spherical cell, morphologically similar to mre-negative mutants of E. coli. Immunolocalization of the MreC protein in B. subtilis revealed that this protein is found at the midcell division site of the bacterial cells, consistent with the postulated role of the Mre proteins in the regulation of septum-specific peptidoglycan synthesis. RID= ID= <E5>Correspondence to: </E5>G.C. Stewart; <E5>email:</E5> stewart&commat;vet.ksu.edu Received: 5 August 2002 / Accepted: 7 October 2002  相似文献   

17.
18.
Treponema denticola is a small anaerobic spirochete often isolated from periodontal lesions and closely associated with periodontal diseases. This bacterium possesses a particular arginine peptidase activity (previously called BANA-peptidase or trypsin-like enzyme) that is common to the three cultivable bacterial species most highly associated with severe periodontal disease. We recently reported the identification of the opdB locus that encodes the BANA-peptidase activity of T. denticola through DNA sequencing and mutagenesis studies. In the present study, we report expression of T. denticola OpdB peptidase in Escherichia coli. The opdB PCR product was cloned into pET30b and then transformed into the E. coli BL21 (DE3)/pLysS expression strain. Assays of enzymatic activities in E. coli containing T. denticola opdB showed BANA-peptidase activity similar to that of T. denticola. Availability of this recombinant expression system producing active peptidase will facilitate characterization of the potential role of this peptidase in periodontal disease etiology.  相似文献   

19.
Twenty-two Bacillus cereus strains were screened for phospholipase C (PLC, EC 3.1.4.3) activity using p-nitrophenyl phosphorylcholine as a substrate. Two strains (B. cereus SBUG 318 and SBUG 516) showed high activity at elevated temperatures (>70°C) at acidic pH (pH 3.5–6) and were selected for cloning and functional expression using Bacillus subtilis. The genes were amplified from B. cereus DNA using primers based on a known PLC sequence and cloned into the expression vector pMSE3 followed by transformation into B. subtilis WB800. On the amino acid level, one protein (PLC318) was identical to a PLC described from B. cereus, whereas PLC516 contained an amino acid substitution (E173D). PLC production using the recombinant strains was performed by an acetoin-controlled expression system. For PLC516, 13.7 U g−1 wet cell weight was determined in the culture supernatant after 30 h cultivation time. Three purification steps resulted in pure PLC516 with a specific activity of 13,190 U mg−1 protein.  相似文献   

20.
Shikimic acid has various pharmaceutical and industrial applications. It is the sole chemical building block for the antiviral drug oseltamivir (Tamiflu®) and one of the potent pharmaceutical intermediates with three chiral centres. Here we report a modified strain of Bacillus megaterium with aroK (shikimate kinase) knock out to block the aromatic biosynthetic pathway downstream of shikimic acid. Homologous recombination based gene disruption approach was used for generating aroK knock out mutant of B. megaterium. Shake flask cultivation showed shikimic acid yield of 2.98 g/L which is ~6 times more than the wild type (0.53 g/L). Furthermore, the shikimate kinase activity was assayed and it was 32 % of the wild type. Effect of various carbon sources on the production of shikimic acid was studied and fructose (4 %, w/v) was found to yield maximum shikimic acid (4.94 g/L). The kinetics of growth and shikimic acid production by aroK knockout mutant was studied in 10 L bioreactor and the yield of shikimic acid had increased to 6 g/L which is ~12 fold higher over the wild type. It is evident from the results that aroK gene disruption had an immense effect in enhancing the shikimic acid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号