首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
为构建树种叶面积指数的估算模型,以NDVI、RVI、FREP、CIGreen、CIRed-edge、MSAVI2为高光谱特征变量,通过统计分析,确定反演树种叶面积指数的最佳光谱特征变量,构建华南农业大学校园内50种亚热带树木的叶片反射率和叶面积指数(LAI)模型。结果表明,6种高光谱特征变量与树种叶面积指数间都具有极显著相关性,其中红边位置反射率(FREP)和比值植被指数(RVI)与LAI的拟合方程的R2都大于0.8,决定系数分别为0.820和0.811。经过精度验证,FREP估算的均方根误差(RMSE)只有0.13,该回归模型为估测亚热带典型树种的叶片LAI最佳模型。从高光谱遥感的角度结合亚热带植被的群落结构特点来看,建立的红边位置光谱反射率与叶面积指数的回归模型普遍具有较高的拟合度,所以利用高光谱特征变量反演亚热带树木叶片的叶面积指数等植被参数的应用前景较好。  相似文献   

2.
CHRIS/PROBA是目前具有最高空间分辨率(17 m×17 m)的星载多角度高光谱数据,该款数据在反演植被垂直结构参数,如树高、叶面积指数(leaf area index,LAI)等方面具有重要的应用前景。基于四尺度几何光学模型得到马尾松(Pinus massoniana Lamb.)冠层的归一化差分植被指数(normalized difference vegetation index,NDVI)各向异性分布规律,利用CHRIS红光特征波段和近红外特征波段构建一种新型多角度植被指数(normalized hotspot-dark-spot difference vegetation index,NHDVI),并将其应用于CHRIS数据对马尾松林的LAI遥感估算上。结果显示:(1)相比归一化差分植被指数(NDVI)与土壤调节植被指数(soil adjusted vegetation index,SAVI)而言,NHDVI能很好地融合光谱信息与角度信息,与地面实测LAI的决定系数达到0.7278;(2)利用NHDVI-LAI统计回归模型方法来反演LAI值,将得到的LAI值与地面实测值进行相关性分析,结果拟合优度达到0.8272,均方根误差RMSE为0.1232。与传统植被指数相比,包含角度信息的多角度植被指数对LAI的反演在精度上有较大提升,同时比基于辐射传输模型的反演方法更简易、实用。  相似文献   

3.
程乾 《应用生态学报》2006,17(8):1453-1458
基于中分辨率成像光谱仪MODIS (moderate resolution imaging spectroradiometer)反射率产品MOD09的同步野外实测水稻叶面积指数(LAI)和叶绿素含量(Chltot)相关数据,探寻用MOD09产品提取的植被指数(VIs)与水稻LAI和Chltot之间的相关性以及估算模型. 结果表明,MOD09计算的VI数值比MODIS前3个波段数值偏大,归一化植被指数NDVI (normalized difference vegetation index) 值普遍比增强性植被指数EVI(enhanced vegetation index) 值大. 通过4种不同植被指数与LAI相关性的比较,得出EVI与LAI的相关关系在水稻各个生育期优于其它植被指数,基于MOD09-EVI建立水稻LAI的遥感估算模型,经实际地面同步数据检验, 模型精度较高. 因而, MOD09-EVI较适用于水稻叶面积指数的实时遥感监测. MOD09红波段与Chltot之间的相关性在水稻前中期达到显著,并且优于其它植被指数,基于MOD09红波段建立了水稻前中期Chltot的估算模型并进行了精度检验. 除水稻孕穗期叶绿素含量估算模型的相关系数和F值通过了显著性检验外, 其余生育期估算模型都没有通过显著性检验.  相似文献   

4.
林地叶面积指数遥感估算方法适用分析   总被引:1,自引:0,他引:1  
叶面积指数是与森林冠层能量和CO2交换密切相关的一个重要植被结构参数,为了探讨估算林地叶面积指数LAI的遥感适用方法和提高精度的途径,利用TRAC仪器测定北京城区森林样地的LAI,从Landsat TM遥感图像计算NDVI、SR、RSR、SAVI植被指数,分别建立估算LAI的单植被指数统计模型、多植被指数组合的改进BP神经网络,获取最有效描述LAI与植被指数非线性关系的方法并应用到TM图像估算北京城区LAI。结果表明,单植被指数非线性统计模型估算LAI的精度高于线性统计模型;多植被指数组合神经网络中,以NDVI、RSR、SAVI组合估算LAI的精度最高,估算值与观测值线性回归方程的R2最高,为0.827,而RMSE最低,为0.189,神经网络解决了多植被指数组合统计模型非线性回归方程的系数较多、较难确定的问题,可较为有效的应用于遥感图像林地LAI的估算。  相似文献   

5.
基于小波分析的大豆叶面积高光谱反演   总被引:2,自引:0,他引:2  
实测了不同水肥耦合、经营制度及有效营养面积条件下的大豆(Glycinemax)冠层高光谱反射率与叶面积指数(LAI),并对光谱反射率、微分光谱与LAI的关系进行了分析;采用比值植被指数(RVI)与归一化植被指数(NDVI)建立了大豆LAI反演模型;采用小波分析对采集的光谱反射率数据进行了能量系数提取,并以小波能量系数作为自变量进行了单变量与多变量回归分析,对大豆LAI进行估算。结果表明:大豆LAI与光谱反射率在可见光波段呈负相关;在近红外波段呈正相关;微分光谱在红边处与大豆LAI密切相关(R2=0.92);RVI与NDVI可以提高大豆LAI的估算精度(R2分别达0.79、0.84);各植被指数各有优缺点,应根据需要进行选择;小波能量系数回归模型可以进一步提高大豆叶面积的估算水平,以一个特定小波能量系数作为自变量的回归模型,大豆LAI回归确定系数R2高达0.884;以4个和6个小波能量系数建立LAI回归分析模型(R2分别达0.92、0.93),2个模型LAI预测值与大豆LAI实测值线性回归确定性系数R2分别为0.90、0.92。比较可知,小波分析可以对高光谱进行特征变量提取,进而反演大豆生理参数,并且反演的LAI精度较光谱反射率、微分光谱及植被指数都有明显提高,小波分析在植被生理参数的高光谱提取方面有着广阔的应用前景。  相似文献   

6.
植被叶面积指数遥感监测模型   总被引:25,自引:4,他引:21  
叶面积指数是植被定量遥感的重要参数,区域的时序列叶面积指数揭示了区域生态的演化过程,反演方法上主要是通过植被指数建立相关模型实现的,对于不同地区或不同气候带而言,模型的通用性以及各种植被指数在模型中的灵敏度都需做进一步的探讨。以江苏省宜兴市作为研究区,采用2002年8月22日获得的Landsat-5TM图像数据和2003年8月23~26日采用LAI-2000进行的野外实测植被叶面积指数(LAI)数据,分别探讨了植被指数(VI)与LAI的一元、多元线性回归模型和非线性回归模型,其中的非线性回归模型包括对数、指数、乘幂和多项式回归模型。结果表明,VI与LAI之间的最佳回归模型为多元线性回归模型,R2达0.864;采用逐步选择剔除法,遴选出了用于回归模型的植被指数为RVI、PVI、SAVIL=0.35、MSAVI、ARVIγ=1、ARVIγ=0.5和SARVI。经模型LAI=-ln((VI-VI∞)/(VIg-VI∞))/KVI检验,预测值(y)与实测值(x)的拟合度较好y=0.5345x 1.3304,R2为0.7379。RVI与LAI的三次多项式回归模型也较好,R2为0.7806。再次为RVI与LAI的一元线性回归模型,R2为0.7726,比值植被指数RVI在反演叶面积指数模型中具有较高的灵敏度。  相似文献   

7.
三种回归分析方法在Hyperion影像LAI反演中的比较   总被引:2,自引:0,他引:2  
孙华  鞠洪波  张怀清  林辉  凌成星 《生态学报》2012,32(24):7781-7790
借助GPS进行地面精确定位,利用LAI-2000冠层分析仅在攸县黄丰桥林场开展130个样地(60m×60m)的叶面积指数(Leaf Area Index,LAI)测量.采用FLAASH模块对Hyperion数据进行大气校正并与地面同步冠层观测数据进行拟合,通过研究地面实测LAI与Hyperion影像波段及其衍生的系列植被指数(NDVI、RVI等)的相关性,筛选出估算叶面积指数的植被指数因子.应用曲线估计、逐步回归及偏最小二乘三种回归分析技术分别建立叶面积指数的最优估算模型.结果表明:参与建模的因子中,比值植被指数(RVI)与LAI的相关性最大,敏感性最高,其次是SARVI0.1,NDVI705,NDVI,SARVI0.1,SARVI0.25;曲线估计、逐步回归分析和偏最小二乘回归三种分析方法所建的6个回归模型中,偏最小二乘回归的拟合效果最好,预测值与实测值的决定系数R2为0.84、曲线估计的拟合效果最低,预测值与实测值的决定系数R2为0.64;建模精度分析表明,选用5-6个自变量因子进行LAI建模是可靠的,以6个植被因子建立的偏最小二乘回归模型预测精度最高.  相似文献   

8.
植被叶面积指数(Leaf Area Index, LAI)是重要的生态学参数, 被广泛用于指示植被密度、生物量、碳、氮物质循环以及气候变化对生态系统的影响, 也作为生态过程模型的重要输入参数。地面实测高光谱遥感数据能以更高的空间分辨率及更高的光谱分辨率监测植物的光谱特征, 为精准反演LAI提供了基础。本项研究以武夷山国家公园黄岗山顶的亚高山草甸为研究对象, 通过建立多种高光谱植被指数和拟合多光谱植被指数反演叶面积指数的统计模型, 并比较高光谱与多光谱对叶面积指数反演的效果, 阐明用于反演高覆盖率亚高山草甸的最适高光谱和拟合多光谱植被指数。结果表明: 高光谱新植被指数(NVI)对于反演LAI有最好的效果, R2 = 0.85, P < 0.01; 依据高光谱NVI拟合而成的多光谱NVI反演结果次之, R2 = 0.82, P < 0.01。几种常用比值植被指数NDVI、MSR、RVI和GNDVI在高光谱和拟合多光谱反演结果中相差不大, 表现较好, R2都在0.65以上。通过对比高光谱和拟合Sentinel-2A和Landsat-8两种多光谱卫星波段的反演结果发现, 光谱响应函数中具有更窄波段范围的近红外、红、绿、蓝波段构成的植被指数可以得到更好的反演结果, 而固定波段的高光谱植被指数未必在每种植被指数中都具有最好的反演效果。同时, 发现当某种植被指数反演LAI的线性回归方程的斜率越大, 说明这种植被指数越有可能随LAI的增大而出现饱和现象, 相反的, 斜率越小则说明该种植被指数没有出现饱和现象。此外, 在研究区内使用高光谱和拟合多光谱波段植被指数法反演LAI, NDVI都获得了较好的效果, 存在很好的线性关系, 之前的很多研究和判断都认为NDVI不适用于反演高覆盖植被的LAI, 这个发现是具有意义的, 表明高覆盖植被的叶面积指数在一定范围内是能够被NDVI(应用最广泛的植被指数)较好的反演, 进一步扩展了NDVI反演LAI的适用性和可能性。  相似文献   

9.
三江平原湿地植被叶面积指数遥感估算模型   总被引:4,自引:0,他引:4  
利用中巴资源卫星CBERS-02影像提取的归一化植被指数(NDVI)和同期野外实测的叶面积指数(LAI)数据,分析了三江平原洪河自然保护区草甸、沼泽植被、灌丛和岛状林4种湿地植被及样本总体的NDVI与LAI之间的相关关系,建立了NDVI与不同湿地植被类型叶面积指数间的线性和非线性回归模型,并制作完成洪河自然保护区LAI空间分布图.结果表明,整个研究区样本总体的LAI估算效果不太理想,其NDVI与LAI的相关性仅为0.523;将研究区分为草甸、沼泽、灌丛和岛状林4种湿地植被类型,NDVI与各植被型LAI的相关性和估算效果均有很大程度的提高,所建立的LAI遥感反演模型以三次曲线回归方程拟合精度最高,R2分别达到0.723、0.588、0.837、0.720.以上结果表明,结合地面实测数据并基于遥感植被分类的基础上,CBERS-02遥感影像可用于较大区域内湿地植被生理参数的反演研究.  相似文献   

10.
以中国东北小兴安岭五营林区为研究区,基于MODIS BRDF遥感模型参数产品数据,首先利用4-Scale模型建立查找表计算像元尺度上各组分比例,估算研究区森林乔木冠层反射率,然后利用冠层反射率数据,获取研究区3种常用森林冠层植被指数,最后基于植被指数与实测叶面积指数构建研究区冠层叶面积指数反演模型,并选取最优模型实现研究区森林冠层叶面积指数反演。结果表明:研究区冠层LAI遥感反演模型中,基于比值植被指数SR(simple ratio,SR)构建的二次多项式反演模型精度最高,且反演精度比未考虑背景反射影响的SR反演模型精度有较大幅度提高,模型决定系数由0.38提高至0.54;反演获取的研究区冠层LAI在2.38~12.67,平均值6.52,LAI值在阔叶林区域相对较高。  相似文献   

11.
基于多源遥感数据的大豆叶面积指数估测精度对比   总被引:1,自引:0,他引:1  
近年来遥感技术的革新促使遥感源越来越丰富.为分析多源遥感数据的叶面积指数(LAI)估测精度,本文以大豆为研究对象,利用比值植被指数(RVI)、归一化植被指数(NDVI)、土壤调整植被指数(SAVI)、差值植被指数(DVI)、三角植被指数(TVI)5种植被指数,结合地面实测LAI构建经验回归模型,比较3类遥感数据(地面高光谱数据、无人机多光谱影像以及高分一号WFV影像)对大豆LAI的估测能力,并从传感器几何位置和光谱响应特性以及像元空间分辨率三方面分析讨论了3类遥感数据的LAI反演差异.结果表明: 地面高光谱数据模型和无人机多光谱数据模型都可以准确预测大豆LAI(在α=0.01显著水平下,R2均>0.69,RMSE均<0.40);地面高光谱RVI对数模型的LAI预测能力优于无人机多光谱NDVI线性模型,但两者差异不大(EA相差0.3%,R2相差0.04,RMSE相差0.006);高分一号WFV数据模型对研究区内大豆LAI的预测效果不理想(R2<0.30,RMSE>0.70).针对星、机、地三类遥感信息源,地面高光谱数据在反演LAI方面较传统多光谱数据有优势但不突出;16 m空间分辨率的高分一号WFV影像无法满足田块尺度作物长势监测的需求;在保证获得高精度大豆LAI预测值和高工作效率的前提条件下,基于无人机遥感的农情信息获取技术不失为一种最佳试验方案.在当今可用遥感信息源越来越多的情况下,农业无人机遥感信息可成为指导田块精细尺度作物管理的重要依据,为精准农业研究提供更科学准确的信息.  相似文献   

12.
There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the canopy scale. In this paper, the percentage of vegetation cover was estimated from vegetation indices using Moderate Resolution Imaging Spectroradiometer (MODIS) data and red-edge parameters through the first derivative spectrum from in situ hypserspectral reflectance data. Hyperspectral reflectance measurements were made on grasslands in Inner Mongolia, China, using an Analytical Spectral Devices spectroradiometer. Vegetation indices such as the difference, simple ratio, normalized difference, renormalized difference, soil-adjusted and modified soil-adjusted vegetation indices (DVI, RVI, NDVI, RDVI, SAVI L=0.5 end MSAVI2) were calculated from the hyperspectral reflectance of various vegetation covers. The percentage of vegetation cover was estimated using an unsupervised spectral-contextual classifier automatically. Relationships between percentage of vegetation cover and various vegetation indices and red-edge parameters were compared using a linear and second-order polynomial regression. Our analysis indicated that MSAVI2 and RVI yielded more accurate estimations for a wide range of vegetation cover than other vegetation indices and red-edge parameters for the linear and second-order polynomial regression, respectively.  相似文献   

13.
光谱植被指数与水稻叶面积指数相关性的研究   总被引:54,自引:3,他引:51       下载免费PDF全文
 综合分析比较了几种常见光谱植被指数与水稻(Oryza sativa)叶面积指数的相关性及其预测力。结果表明,植被指数的预测力在水稻营养生长旺盛期间最好。植被指数的预测力主要依赖于叶面积指数(LAI)的整体变化范围。因此,综合不同生育时期和氮肥处理的试验资料,光谱植被指数能准确地预测LAI的变化。LAI与各植被指数均呈曲线相关,与比值植被指数(RVI)、再归一化植被指数(RDVI)和R810/R560显著幂相关,与归一化植被指数(NDVI)、垂直植被指数(PVI)、差值植被指数(DVI)、土壤调整植被指数(SAVI)和转换型土壤调整指数(TSAVI)显著指数相关。其中,近红外与绿光波段的比值R810/R560的预测力最佳。用不同移栽秧龄、不同密度、不同水分和氮肥处理的数据对R810/R560的表现进行了检验,结果表明估算精度平均为91.22%,估计的均方差根(RMSE)平均为0.480 5,平均相对误差为-0.013。表明宽波段光谱植被指数可以准确地用来监测水稻叶面积指数。  相似文献   

14.
林杰  潘颖  杨敏  佟光臣  唐鹏  张金池 《生态学报》2018,38(10):3534-3542
叶面积指数(Leaf Area Index,LAI)高度综合了植被水平覆盖状况和垂直结构,以及枯枝落叶层厚薄和地下生物量多少,是植被影响土壤侵蚀的主要方面。区域尺度的时间序列叶面积指数揭示了区域土壤侵蚀的演化过程。因此,及时准确地掌握区域尺度上长时间序列的植被LAI,对研究土壤侵蚀动态变化与植被的关系至关重要。选择南京市1988-2013年10期遥感影像,基于反向传播(Back Propagation,BP)神经网络构建LAI反演模型,进行了长时间序列的叶面积指数反演。结合2009和2010年LAI实测值,验证与探讨了该模型的评价精度与适应性。结果表明:(1)该模型拟合度较高,2009和2010年平均相对误差、均方根误差、相关系数分别是0.2395和0.2174,0.2962和0.2581,0.7713和0.6844,各项精度评价指标均较好;(2)统计分析去除耕地后全市LAI变化,低植被覆盖(LAI<2)面积不断增加,高植被覆盖区(LAI>3)面积先减少后增加,耕地面积不断减少,符合南京市的发展变化规律;(3)主城区LAI年际变化与其他学者得到的南京市植被盖度变化趋势一致,反演结果的时序性较高。本文提出的基于反向传播神经网络模型反演长时间序列LAI是可行的,为区域尺度土壤侵蚀定量遥感监测提供新途径。  相似文献   

15.
Aims Accurate remote estimation of the fraction of absorbed photosynthetically active radiation (fAPAR) is essential for the light use efficiency (LUE) models. Currently, one challenge for the LUE models is lack of knowledge about the relationship between fAPAR and the normalized difference vegetation index (NDVI). Few studies have tested this relationship against field measurements and evaluated the accuracy of the remote estimation method. This study aimed to reveal the empirical relationship between NDVI and fAPAR and to improve algorithms for remote estimation of fAPAR.Methods To investigate the method of remote estimation of fAPAR seasonal dynamics, the CASA (Carnegie–Ames–Stanford Approach) model and spectral vegetation indices (VIs) were used for in situ measurements of spectral reflectance and fAPAR during the growing season of a maize canopy in Northeast China.Important findings The results showed that the fAPAR increased rapidly with the day of year during the vegetative stage, it remained relatively stable at the stage of reproduction, and finally decreased slowly during the senescence stage. In addition, fAPAR green [fAPAR green = fAPAR × (green LAI/green LAI max)] showed clearer seasonal trends than fAPAR. The NDVI, red-edge NDVI, wide dynamic range vegetation index, red-edge position (REP) and REP with Sentinel-2 bands derived from hyperspectral remote sensing data were all significantly positively related to fAPAR green during the entire growing season. In a comparison of the predictive performance of VIs for the whole growing season, REP was the most appropriate spectral index, and can be recommended for monitoring seasonal dynamics of fAPAR in a maize canopy.  相似文献   

16.
平稳小波变换在冬小麦SPAD高光谱监测中的应用   总被引:1,自引:1,他引:0  
在2010与2011年度冬小麦生长季通过大田小区试验,利用ASD便携式野外光谱仪和SPAD 502叶绿素计实测冬小麦冠层的高光谱反射率与SPAD值.分析不同SPAD值下的冬小麦冠层光谱特征,建立了基于归一化植被指数(NDVI)与比值植被指数(RVI)、小波能量系数的不同生育期冬小麦SPAD估算模型.结果表明: 随着SPAD值的增大,“绿峰”与“红谷”特征愈加明显.在冬小麦返青期、拔节期、抽穗期、灌浆期NDVI估算SPAD的效果较好,估算模型的R2分别为0.7957、0.8096、0.7557、0.5033.小波能量系数回归模型可以提高冬小麦SPAD的估算精度,在返青期、拔节期、抽穗期、灌浆期以高频、低频小波能量系数为自变量的冬小麦SPAD估算模型的R2分别达到0.9168、0.9154、0.8802、0.9087.  相似文献   

17.
基于遥感图像不同辐射校正水平的植被覆盖度估算模型   总被引:2,自引:0,他引:2  
选用南京市SPOT 5 HRG图像的地物反射率(PAC)、表观反射率(TOA)和灰度值(DN)影像,提取了4种植被指数(VI),即归一化植被指数(NDVI)、转换植被指数(TVI)、土壤调节植被指数(SAVI)和修正的土壤调节植被指数(MSAVI),与地面实测的植被覆盖度进行了回归分析,并建立了36个VI-VFC关系模型.结果表明:在所有模型中,基于PAC级影像提取的NDVI和TVI的3次多项式模型最优;其次为基于DN级影像提取的SAVI和MSAVI的3次多项式模型,在VFC>0.8时其精度略高于前两种模型.这4个模型在植被中等密集区域(VFC=0.4~0.8)的精度高于植被稀疏区域(VFC=0~0.4).所建模型可通过中间模型的联结,进行推广使用.在基于VI-VFC关系建模过程中,基于遥感影像不同辐射校正水平提取植被指数,有利于充分挖掘遥感影像信息,进而提高VFC估算的精度.  相似文献   

18.
不同大气校正方法对森林叶面积指数遥感估算影响的比较   总被引:5,自引:1,他引:4  
利用TM原始图像以及经过6S模型和基于影像自身的Gilabert模型大气校正后的地面绝对反射率图像,分别计算了褒河流域阔叶林和针阔混交林2种林型的5类光谱植被指数(SR、NDVI、MNDVI、ARVI和RSR),并建立各林型森林叶面积指数与同时相的各个植被指数的相关关系。结果表明,2种大气校正模型均显著提高了各植被指数与森林叶面积指数的相关关系,除了对森林叶面积指数与植被指数SR和NDVI的相关关系影响不显著外,对森林叶面积指数与植被指数MNDVI、ARVI和RSR相关关系的影响均非常显著。说明不同大气校正模型对叶面积指数的遥感估算结果有较大影响。因此,在利用遥感数据进行定量分析、信息提取和生态遥感应用时,不仅要进行大气校正,而且还要慎重选择大气校正模型和植被指数。  相似文献   

19.
基于高光谱遥感的小麦叶干重和叶面积指数监测   总被引:28,自引:0,他引:28       下载免费PDF全文
生物量和叶面积指数(LAI)是描述作物长势的重要参数, 叶干重和LAI的实时动态监测对小麦(Triticum aestivum)生长诊断和管理调控具有重要意义。为分析多种高光谱参数估算小麦叶干重和LAI的效果, 建立小麦叶干重和LAI的定量监测模型, 该研究连续3年采用不同小麦品种进行不同施氮水平的大田试验, 于小麦不同生育期采集田间冠层高光谱数据并测定叶片叶干重和LAI。试验结果显示, 小麦叶干重和LAI随施氮水平的提高而增加, 随生育进程呈单峰动态变化模式。小麦叶干重和LAI与光谱反射率间相关性较好的区域主要位于红光波段(590~710 nm, r<-0.60)和近红外波段(745~1 130 nm, r>0.69)。对于不同试验条件下的叶干重和LAI, 可以使用统一的光谱参数进行定量反演, 其中基于RVI (810, 560)、FD755GM1SARVI (MSS)和TC3等光谱参数的方程拟合效果较好。经不同年际独立试验数据的检验表明, 以参数RVI (810, 560)、GM1SARVI (MSS)、PSSRb、(R750-800/R695-740) -1、VOG2MSR705为变量建立的叶干重和LAI监测模型均给出较好的检验结果。因此, 利用关键特征光谱参数可以有效地评价小麦叶片生长状况, 尤其是光谱参数RVI (810, 560)、GM1SARVI (MSS)可以对不同条件下小麦叶干重和LAI进行准确可靠的监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号