首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A new procedure for the purification of phospholipase C from Clostridium perfringens has been devised that results in essentially pure enzyme. The procedure consists of ammonium sulfate fractionation, ion-exchange chromatography on QAE-Sephadex, and affinity chromatography on phosphatidylcholine linked to Sepharose. The molecular weight of the enzyme, determined by sodium dodecyl sulfate-gel electrophoresis, amino acid analysis, and gel filtration, is 43,000; and the isoelectric point is pH 5.4. The enzyme was optimally active with phosphatidylcholine dispersed in sodium deoxycholate, although appreciable activity was observed with either phosphatidylcholine or sphingomyelin dispersed with ethanol. The requirement for metal ions in the assay could be met by a number of different ions. The pure enzyme was found to contain 2 mol zinc per mol enzyme, thus implicating it as a zinc metalloenzyme.  相似文献   

2.
1. Metal ions other than zinc and magnesium were effective in modulating the activity of rat osseous plate alkaline phosphatase. 2. Increasing pH had remarkable effects on the modulation of rat osseous plate alkaline phosphatase. 3. The modulation of enzyme activity by zinc, manganese and cobalt ions was slightly affected by pH variations. 4. Zinc ions were stimulatory for the enzyme at very low concentrations (50 nM). Above 50 nM zinc ions inhibited the enzyme by displacing magnesium ions. 5. Calcium ions were inhibitors of alkaline phosphatase (Kd = 10 microM) whereas manganese (Kd = 1.3 microM) and cobalt (Kd = 0.2 microM) ions were stimulatory in the pH range 8.0-10.0.  相似文献   

3.
Excess zinc ions are a competitive inhibitor for carboxypeptidase A   总被引:2,自引:0,他引:2  
J Hirose  S Ando  Y Kidani 《Biochemistry》1987,26(20):6561-6565
The mechanism for inhibition of enzyme activity by excess zinc ions has been studied by kinetic and equilibrium dialysis methods at pH 8.2, I = 0.5 M. With carboxypeptidase A (bovine pancreas), peptide (carbobenzoxyglycyl-L-phenylalanine and hippuryl-L-phenylalanine) and ester (hippuryl-L-phenyl lactate) substrates were inhibited competitively by excess zinc ions. The Ki values for excess zinc ions with carboxypeptidase A at pH 8.2 are all similar [Ki = (5.2-2.6) X 10(-5) M]. The apparent constant for dissociation of excess zinc ions from carboxypeptidase A was also obtained by equilibrium dialysis at pH 8.2 and was 2.4 X 10(-5) M, very close to the Ki values above. With arsanilazotyrosine-248 carboxypeptidase A ([(Azo-CPD)Zn]), hippuryl-L-phenylalanine, carbobenzoxyglycyl-L-phenylalanine, and hippuryl-L-phenyl lactate were also inhibited with a competitive pattern by excess zinc ions, and the Ki values were (3.0-3.5) X 10(-5) M. The apparent constant for dissociation of excess zinc ions from arsanilazotyrosine-248 carboxypeptidase A, which was obtained from absorption changes at 510 nm, was 3.2 X 10(-5) M and is similar to the Ki values for [(Azo-CPD)Zn]. The apparent dissociation and inhibition constants, which were obtained by inhibition of enzyme activity and spectrophotometric and equilibrium dialysis methods with native carboxypeptidase A and arsanilazotyrosine-248 carboxypeptidase A, were almost the same. This agreement between the apparent dissociation and inhibition constants indicates that the zinc binding to the enzymes directly relates to the inhibition of enzyme activity by excess zinc ions. Excess zinc ions were competitive inhibitors for both peptide and ester substrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.  相似文献   

5.
The zinc coordination in 5-aminolevulinate dehydratase was investigated by extended X-ray absorption fine structure (EXAFS) associated with the zinc K-edge. The enzyme binds 8 mol of zinc/mol of octameric protein, but only four zinc ions seem sufficient for full activity. We have undertaken a study on four forms of the enzyme: (a) the eight-zinc native enzyme; (b) the enzyme with only the four zinc sites necessary for full activation occupied; (c) the enzyme with the vacant sites of (b) occupied by four lead ions; (d) the product complex between (b) and porphobilinogen. We have shown that two structurally distinct types of zinc sites are available in the enzyme. The site necessary for activity has an average zinc environment best described by two/three histidines and one/zero oxygen from a group such as tyrosine or a solvent molecule at 2.06 +/- 0.02 A, one tyrosine or aspartate at 1.91 +/- 0.03 A, and one cysteine sulfur at 2.32 +/- 0.03 A with a total coordination of five ligands. The unoccupied site in (b), obtained by taking the difference spectrum between the spectra from samples (a) and (b), is dominated by a single contribution of four cysteinyl sulfur atoms at 2.28 +/- 0.02 A. Spectra from samples (c) and (d) show only small changes from that of (b), reflecting a slight rearrangement of the ligands around the zinc atom.  相似文献   

6.
1. Polidocanol-solubilized apoalkaline phosphatase could be stimulated either by zinc ions (Kd = 8.5 nM) or by magnesium ions alone (Kd = 3.8 microM). 2. Zinc and magnesium ions had synergistic effects on Polidocanol-solubilized apoalkaline phosphatase, leading to a fully active enzyme (700-800 U/mg). 3. Zinc ions inhibited non-competitively the Polidocanol-solubilized apoenzyme (Ki = 7.1 microM) by displacing magnesium ions from their binding sites. 4. A model for the action of zinc and magnesium ions on the modulation of the enzyme activity is proposed.  相似文献   

7.
Rat matrix-induced alkaline phosphatase is an enzyme which requires magnesium and zinc ions for its maximal activity. Two Zn(II) ions and one Mg(II) ion are bound to each subunit of native dimeric enzyme. The presence of magnesium ion (10-100 microM) or zinc ion (7-20 nM) alone is sufficient to stimulate apoenzyme activity. However maximal activity (264 U/mg) requires the presence of both ions. Binding of Zn(II) ions to the Mg(II) binding site causes a strong inhibition of the apoenzyme while the binding of Mg(II) on Zn(II) binding site is not sufficient to stimulate PNPPase activity of the apoenzyme. Binding of both ions to the enzyme molecule did not change the apparent dissociation constant for PNPP hydrolysis.  相似文献   

8.
Actomyosin preparations of the carotid arteries of cattle contain a soluble phosphatase activity, which can be removed from the contractile proteins by repeated washings. This enzyme activity is lowered by high ionic strength, potassium fluoride, zinc acetate, ammonium molybdate, and vanadate. Magnesium ions enhance the enzyme activity. The phosphatase activity shows a maximum between pH 5.5 and 6.0 and a plateau of pH 7-9. By means of gel filtration on Sepharose 6B the phosphate activity is separated into three peaks, which are characterized with respect to their inhibition by potassium fluoride, ammonium molybate, and vanadate and their dependence on pH.  相似文献   

9.
The neutral protease of Bacillus amylosacchariticus was inactivated by low concentrations of several metal-chelating agents and the inactivated enzyme with EDTA restored its activity almost completely by the addition of Zn++ or Co++ and partially by Fe++ or Mn++, if these metal ions were added shortly after the EDTA-treatment. The native enzyme was found to contain 0.19% of zinc together with a significant amount of calcium. Parallel increase in specific activity and zinc content of enzyme preparation was observed throughout the purification procedure. The elution pattern of enzyme activity on a CM-cellulose column chromatography also completely coincided with that of protein-bound zinc. A zinc-free inactive enzyme was also reactivated by the addition of zinc or cobalt ions, clearly showing that the neutral protease of B. amylosacchariticus is a zinc mctalloenzyme.  相似文献   

10.
Modification of the carboxylate groups of purified S1 nuclease resulted in a loss of its single-stranded DNAase, RNAase and phosphomonoesterase activities. The inactivation was due to the removal of zinc atoms from the enzyme and this in turn was dependent on the degree of modification. While the removal of one zinc atom resulted in the partial inactivation of the enzyme, removal of the remaining zinc atoms resulted in the complete inactivation of the enzyme. Similar results were obtained when the purified enzyme was incubated with various concentrations of the metal chelator, EDTA. The EDTA-(1 mM)-treated enzyme, depleted of one zinc atom, showing 40-45% residual activity, when incubated with 1 mM Zn2+ or 1 mM Co2+, regained a significant amount of its initial activity towards all the substrates. However, Woodward's-Reagent-K-modified enzyme depleted of one zinc atom and having the same level of activity (40-45%) could not regain its activity, indicating that the carboxylate groups are involved in the metal binding. Data obtained with carboxylate-group modification, EDTA-treatment, reconstitution with metal ions, zinc estimation and CD analysis of the enzyme suggests that, out of three zinc atoms present in S1 nuclease, zinc I is easily replaceable and is probably involved in the catalytic activity while zinc II and zinc III are involved in maintaining the enzyme structure.  相似文献   

11.
Calf thymus chromatin, isolated using a standard (low ionic strength, but nonchelating) isolation protocol, dialyzed against either Tris-PMSF or Tris-EDTA, was reconstituted in a high salt compacting buffer (COM) or a low salt dispersing buffer (DIS) prior to digestion with endogenous nucleases. A greater level of enzyme activity occurred when chromatin was in a condensed state (COM buffer) and not chelated prior to digestion. In contrast, chromatin chelated by dialysis against Tris-EDTA prior to digestion showed higher levels of enzyme activity in the dispersed state (DIS buffer). Nonchelated undigested chromatin contained 0.280 +/- 0.16 ug copper/mg DNA and and 0.305 +/+- 0.09 ug zinc/mg DNA. Chelation removed about 78% of copper per mg DNA and approximately 65% of zinc per mg DNA. In COM buffer after a 20 min digestion, the solubilized fraction was enriched in copper showing about 20 X more metal per mg DNA than nonchelated chromatin. Approximately the same amount of zinc was found in both chelated and nonchelated chromatin while there was less zinc in chelated chromatin solubilized in DIS buffer. Thus, chelation has important effects on the digestibility of chromatin and on the type of ionic environment that provides the most favorable conditions for endogenous nuclease activity.  相似文献   

12.
Aminopeptidase is isolated and purified from the culture liquid of the thermophilic strain of Bacillus licheniformis. The aminopeptidase predominantly splits off N-terminal leucin in short peptides and hydrolyzes leucinamide as well. The molecular weight of the enzyme is about 60 kDa. The enzyme is able to form aggregates. Optimum of aminopeptidase activity was demonstrated at pH 8.0-8.3 and temperature of 85 degrees C. The enzyme is inactivated by metal-binding reagents and reducing substances, and is activated by cobalt and PCMB ions. The EDTA-inactivated enzyme activity is reduced by cobalt and zinc ions, however the latter has no activating action. The enzyme under study is characterized by high thermostability: in the presence of the substrate at the temperature of 90 degrees C the reaction linearity is retained for not less than 2 h and without the substrate the half-life of the aminopeptidase at 90 degrees C is 145 min. Extracellular aminopeptidase of the thermophilic strain of B. licheniformis is a new enzyme differing from the aminopeptidases described by the present in high thermostability, induced, evidently, by the presence of one or several disulphide bonds in the enzyme molecule.  相似文献   

13.
The active-site metal ion and the associated ligand amino acids in the NADP-linked, tetrameric enzyme Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) were characterized by atomic absorption spectroscopy analysis and site-directed mutagenesis. Our preliminary results indicating the presence of a catalytic zinc and the absence of a structural metal ion in TBADH (Peretz & Burstein. 1989. Biochemistry 28:6549-6555) were verified. To determine the role of the putative active-site zinc, we investigated whether exchanging the zinc for other metal ions would affect the structural and/or the enzymatic properties of the enzyme. Substituting various metal ions for zinc either enhanced or diminished enzymatic activity, as follows: Mn2+ (240%); Co2+ (130%); Cd2+ (20%); Cu2+ or V3+ (< 5%). Site-directed mutagenesis to replace any one of the three putative zinc ligands of TBADH, Cys 37, His 59, or Asp 150, with the non-chelating residue, alanine, abolished not only the metal-binding capacity of the enzyme but also its catalytic activity, without affecting the overall secondary structure of the enzyme. Replacing the three putative catalytic zinc ligands of TBADH with the respective chelating residues serine, glutamine, or cysteine damaged the zinc-binding capacity of the mutated enzyme and resulted in a loss of catalytic activity that was partially restored by adding excess zinc to the reaction. The results imply that the zinc atom in TBADH is catalytic rather than structural and verify the involvement of Cys 37, His 59, and Asp 150 of TBADH in zinc coordination.  相似文献   

14.
Influence of metal ions on structure and catalytic activity of papain   总被引:1,自引:0,他引:1  
Papain is an endoprotease belonging to cysteine protease family. The catalytic activity of papain in presence of two different metal ions namely zinc and cadmium has been investigated. Both the metal ions are potent inhibitors of the enzyme activity in a concentration dependent manner. The enzyme loses 50% of its activity at 2 x 10(-4) M of CdCl2 and 4 x 10(-4) M of ZnCl2. It is completely inactivated above 1 x 10(-3) M concentration of either ZnCl2 or CdCl2. Of the two metal ions zinc with a ki value of 5 x 10(-5) M is a more potent inhibitor than cadmium which has a ki value of 8 x 10(-5) M. Both the metal ions have higher affinity for active site than the substrate. At concentrations above 1 x 10(-2) M of metal ions the inhibition is not reversible. Calorimetric studies showed decreased thermal stability of papain upon binding of these metal ions. Far UV circular dichroic spectral data showed only small changes in the beta-structure content upon binding of these metal ions. These data are also supported by decrease in the apparent thermal transition temperature of papain by 5 degrees C upon binding of metal ions indicating destabilization of the papain molecule. The mechanism of both partial and complete inactivation of papain in presence of these two metal ions both at lower and higher concentration has been explained.  相似文献   

15.
The specific substitution, using highly selective techniques, of catalytic and/or noncatalytic zinc ions by cobaltous ions in horse liver alcohol dehydrogenase (EC 1.1.1.1) has been studied with dissolved, crystalline and agarose-immobilised enzyme, in order to examine the effect of protein structure on the specificity of the metal exchange. The different binding sites can be clearly distinguished by the absorption spectra of their cobalt derivatives. In solution an anaerobic column chromatographic method made it possible to exchange half of the zinc in the enzyme by cobalt ions in a much shorter time than previous procedures. By raising the temperature in the exchange step, even the slowly exchanging zinc ions were substituted by cobalt, yielding products similar to cobalt alcohol dehydrogenases described earlier. Treatment of crystal suspensions of the enzyme with chelating agents (preferentially dipicolinic acid) gave an inactive protein with two zinc ions remaining bound. The enzyme could be reactivated by treatment of the crystalline protein with 5 mM zinc or cobaltous ions or by dialysis of dissolved inactive protein against 20 microM zinc or 1 mM cobaltous ions. Higher metal concentrations led to denaturation but the inactive protein could be crystallized from solution and then reactivated completely at higher metal concentrations. The preparation and absorption spectrum show that cobalt is bound specifically at the catalytic sites. Since metal substitution at these sites critically depends on the maintenance of the correct tertiary and quaternary structure, these must be preserved in the crystal lattice and partially altered in solution when the catalytic zinc ions are removed (or when excess of metal ions is applied), thus demonstrating the structure-stabilizing role of the catalytic metal ions. The enzyme immobilised on agarose, with unchanged content of active sites [Schneider-Bernl?hr et al. (1978) Eur. J. Biochem. 41, 475--484], was treated like the crystal suspensions. Although half of the zinc was removed, some activity remained. After reactivation with cobaltous ions, a loss of about 30% active sites was measured. Thus the apparently homogenous bound enzyme was rather heterogeneous in the properties of its catalytic metal binding sites. These results are taken as further proof for the dependence of the metal substitution on the proper tertiary and quaternary structure which is strained by multiple interactions in the covalently immobilised enzyme.  相似文献   

16.
RNA Polymerase holoenzyme and core enzyme from Escherichia coli B have been shown to contain two zinc ions. Flameless atomic absorption spectroscopy of the isolated core subunits indicated that one zinc ion is localized on the beta subunit and the other is bound on the beta' subunit. Atomic fluorescence spectroscopy showed that prolonged dialysis of the metalloenzyme against 0.01 M o-phenanthroline resulted in the removal of both zinc(II) ions with accompanying loss of enzymatic activity. The activity of the apoenzyme was observed to be completely restored by readdition of zinc(II) and partially restored by cobalt(II).  相似文献   

17.
Extracellular nuclease produced by a marine Vibrio sp., strain No. 2, was purified by salting out with ammonium sulfate and by chromatography on a DEAE-cellulose column and twice on a Sephadex G-200 column. The nuclease was eluted as a single peak in which the deoxyribonuclease (DNase) activity and ribonuclease (RNase) activity appeared together. Polyacrylamide disc gel electrophoresis showed a single band of stained protein which had both DNase and RNase activity. The molecular weight of the enzyme was estimated to be 100 000 daltons. When using partially purified enzyme from the DEAE-cellulose column, the optimum pH for activity was 8.0, and the enzyme was activated strongly by 0.05 M Mg2+ ions and stabilized by 0.01 M Ca2+ ion. These concentrations of Mg2+ and Ca2+ ions are similar to those of the two cations in seawater. Indeed, the enzyme revealed high activity and strong stability when kept in seawater. The presence of particulate matter, such as cellulose powder, chitin powder. Hyflosupercel, Kaolin, and marine mud increased the stability of the enzyme. When the hydrostatic pressure was increased from 1 to 1000 atmospheres, the decrements of the enzyme activity were more pronounced at 30 and 40 degrees C than at 25 or 50 degrees C. The enzyme activity was restored after decompression to 1 atm at 30 degrees C.  相似文献   

18.
We have obtained 53 mg of 99% pure dihydroorotase from 10.9 g of frozen Escherichia coli pyrC plasmid-containing E. coli cells using a 4-step 16-fold purification procedure, a yield of 60%. We characterize the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (a dimer of subunit molecular weight 38,300 +/- 2,900), high performance liquid chromatography gel sieving, amino acid analysis, amino terminus determination (blocked), and specific activity. The isolated enzyme contains 1 tightly bound essential zinc atom/subunit, and readily but loosely binds 2 additional Zn(II) or Co(II) ions/subunit which modulate catalytic activity; treatment of crude extracts with weak chelators suggests that the enzyme contains 3 zinc atoms/subunit in vivo. Two of the 6 thiol groups/subunit react rapidly with 5,5'-dithiobis(2-nitrobenzoate) when 1 Zn/subunit enzyme is used, but slowly when 3 Zn/subunit enzyme is used. The 2 weakly bound Zn(II) ions/subunit protect against the reversible air oxidation which lowers the specific activity of the enzyme and renders it unreactive with 5,5'-dithiobis(2-nitrobenzoate). The dilution activation observed in the presence of substrate, the dilution inactivation observed in the absence of substrate, and the transient activation by the metal chelator oxalate are interpreted as evidence for an unstable, hyperactive monomer.  相似文献   

19.
Human tyrosine 3-monooxygenase (tyrosine hydroxylase) exists as four different isozymes (TH1-TH4), generated by alternative splicing of pre-mRNA. Recombinant TH1, TH2 and TH4 were expressed in high yield in Escherichia coli. The purified isozymes revealed high catalytic activity [when reconstituted with Fe(II)] and stability at neutral pH. The isozymes as isolated contained 0.04-0.1 atom iron and 0.02-0.06 atom zinc/enzyme subunit. All three isozymes were rapidly activated (13-40-fold) by incubation with Fe(II) salts (concentration of iron at half-maximal activation = 6-14 microM), and were inhibited by other divalent metal ions, e.g. Zn(II), Co(II) and Ni(II). They all bind stoichiometric amounts of Fe(II) and Zn(II) with high affinity (Kd = 0.2-3 microM at pH 5.4-6.5). Similar time courses were observed for binding of Fe(II) and enzyme activation. In the absence of any free Fe(II) or Zn(II), the metal ions were released from the reconstituted isozymes. The dissociation was favoured by acidic pH, as well as by the presence of metal chelators and dithiothreitol. The potency of metal chelators to remove iron from the hydroxylase correlated with their ability to inhibit the enzyme activity. These studies show that tyrosine hydroxylase binds iron reversibly and that its catalytic activity is strictly dependent on the presence of this metal.  相似文献   

20.
Collagenase-like peptidase, an enzyme degrading synthetic collagenase substrate (PZ-pentapeptide), was purified from rat testes and its properties were examined. Its activity was strongly inhibited by chelating agents, such as EDTA and 1,10-phenanthroline. By chelation and exhaustive dialysis it was possible to obtain this enzyme in its inactive, metal-free form. The activity of the metal-free enzyme was partly recovered by treatment with zinc or manganese ions, while a combined zinc and manganese treatment resulted in complete recovery of enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号