首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The causes of craniofacial variation among human populations have been the subject of controversy. In this work, we studied aboriginal populations from southern South America, the last continental region peopled by humans and with a wide range of ecological conditions. Because of these characteristics, southern South America provides a unique opportunity to study the relative importance of random and nonrandom factors in human diversification. Previous craniometric studies recognized remarkable differences among populations from this region, usually resorting to random factors as the main explanation. In contrast, here we suggest, using tests based on quantitative genetic models, that: (1) the rate of craniofacial divergence among these populations is too high and (2) the patterns of variation within and between populations are too different to be explained by genetic drift alone. In addition, the among-sample craniofacial variation is correlated with climate and diet but not with mtDNA variation. We suggest that the influence of nonrandom factors (e.g., plasticity, selection) on human craniofacial diversification in regions with large ecological variation is more important than generally acknowledged and capable to generate large craniofacial divergence in a short period of time. These results bring nonrandom factors into focus for the interpretation of human craniofacial variation.  相似文献   

2.
Chaves JA  Weir JT  Smith TB 《Molecular ecology》2011,20(21):4564-4576
The Andes are known to have influenced speciation patterns in many taxa, yet whether species diversification occurred simultaneously with their uplift or only after uplift was complete remains unknown. We examined both the phylogenetic pattern and dates of branching in Adelomyia hummingbirds in relation to Andean uplift to determine whether diversification coincides with the chronological phases of the uplift or with recent climatic fluctuations after Andean formation. Results suggest that the genus Adelomyia originated in the central Andes in the Miocene and was found to be comprised of six deeply divergent phylogroups dating between 3.5 and 6 Ma. The most basal splits in the tree, corresponding to the most southerly distributed of the six phylogroups, diverged in the late Miocene, whereas the northern phylogroups originated during the early-to-mid-Pliocene, when the northern Andes reached heights sufficient to support Adelomyia populations. Although we provide evidence for a southern origin for the group, the subsequent diversification of the northern phylogroups did not strictly follow the hypothesized south-to-north orogeny of the Andes. Further genetic structure within phylogroups may have resulted from Pleistocene climate fluctuations after the onset of the six lineages during the Mio-Pliocene. We explore the processes that promoted diversification in the Andes and suggest that in at least some groups, divergence was coupled to Andean orogeny.  相似文献   

3.
The Common Bush-Tanager (Chlorospingus ophthalmicus) is distributed in Neotropical cloud-forests from Mexico to Argentina and contains 25 subspecies divided into eight subspecies groups based on biogeography, eye coloration, presence of a postocular spot and chest band. All of Central America is occupied by a single subspecies group; whereas the Andes are believed to be occupied by seven additional subspecies groups. We used five mitochondrial genes to investigate the phylogeography and possible species limits of the ophthalmicus complex. A total of 14 monophyletic lineages were uncovered within the ophthalmicus complex, including three clades currently classified as separate species (C. semifuscus, inornatus and tacarcunae). Divergence estimates for these clades date between 0.8 and 5.2 million years ago (Ma). Contrary to expectations based on morphological diversity, phylogeographic structure was greatest in Mexico and Central America and weakest in the Andes. Morphological and genetic divergences were not significantly correlated and most morphologically defined subspecies groups were not supported. Our evidence suggests the ophthalmicus complex originated in Mexico ca. 6.0 Ma (million years ago) and spread south into the Andes ca. 4.7 Ma before the completion of the Isthmus of Panama. Three genetically divergent lineages of ophthalmicus that formed in the Andes possess a complex checkerboard distribution, with a single lineage represented by disjunct populations from Venezuela and the southern Andes, while intervening populations in Ecuador and Central Peru form two genetically and morphologically divergent lineages.  相似文献   

4.
Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus , a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus , yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.  相似文献   

5.
The cultivated potato (Solanum tuberosum ssp. tuberosum) has more than 200 related wild species distributed along the Andes, adapted to a wide range of geographical and ecological areas. Since the last century, several collection expeditions were carried out to incorporate genetic variability into the potato germplasm around the world. However, little is known about the reproductive ecology and genetic population structure of natural potato population from field studies. The aim of this work is to study, in the field, the genetic variability and reproductive strategies of populations of one of the most widely distributed potato species in Argentina, Solanum kurtzianum, growing in Mendoza province. AFLP markers showed that the genetic variability is mainly present among plants within populations, indicating that in the sampled populations, sexual reproduction is more relevant than clonal multiplication (by tubers). Additional evidence was obtained evaluating the genetic diversity in populations with a distribution in patches, where several genotypes were always detected. From a field study performed in the Villavicencio Natural Reserve, we found that the average number of plump seeds per fruit was 94.3, identified and calculated the foraging distance of four insect pollinators, and demonstrated the seed dispersal by storm water channels. We argue that the breeding system, the two modes of reproduction and the ecological interaction described here may have a prominent role in determining the genetic structure of S. kurtzianum populations, and discuss the importance of field studies on population genetics, reproductive biology and ecology to design collections and conservation strategies.  相似文献   

6.
Domesticated populations of the South American grain chenopod quinua (Chenopodium quinoa subsp.quinoa) have been formally classified on the basis of pigmentation and inflorescence morphology, and informally grouped according to ecotypic variation. Comparative analysis of morphometric and electrophoretic data taken from 98 populations reveals two fundamental elements: a coastal type from southwestern Chile and an Andean type distributed at elevations above 1,800 m from northwestern Argentina to southern Colombia. Andean quinua can be further divided into northern and southern groups, with the northern populations weakly marked by broad, unlobed leaf blades, sharply margined fruit, and relative uniformity. With the exception of allozymes unique to coastal quinua, characteristics that differentiate populations from the Chilean coast and the northern Andes represent a subset of variation present in the southern Andes. This could reflect diffusion from a possible center of origin in the southern highlands. Overall phenetic association places populations from the Altiplano of Peru and Bolivia in a central, linking position. The high genetic identities among all quinua populations argue against a polyphyletic origin for the crop and specific differentiation among cultivar groups. The overall pattern of variation supports the ecotypic approach toward landrace classification of quinua, although congruence between ecological and morphogenetic variation is not complete. While genetic diversity is clearly centered in populations of the southern Andes, conservation efforts should focus on well differentiated quinua populations at the poorly marked northern and southern extremes of distribution.  相似文献   

7.

Background

While the gene flow in some organisms is strongly affected by physical barriers and geographical distance, other highly mobile species are able to overcome such constraints. In southern South America, the Andes (here up to 6,900 m) may constitute a formidable barrier to dispersal. In addition, this region was affected by cycles of intercalating arid/moist periods during the Upper/Late Pleistocene and Holocene. These factors may have been crucial in driving the phylogeographic structure of the vertebrate fauna of the region. Here we test these hypotheses in the burrowing parrot Cyanoliseus patagonus (Aves, Psittaciformes) across its wide distributional range in Chile and Argentina.

Results

Our data show a Chilean origin for this species, with a single migration event across the Andes during the Upper/Late Pleistocene, which gave rise to all extant Argentinean mitochondrial lineages. Analyses suggest a complex population structure for burrowing parrots in Argentina, which includes a hybrid zone that has remained stable for several thousand years. Within this zone, introgression by expanding haplotypes has resulted in the evolution of an intermediate phenotype. Multivariate regressions show that present day climatic variables have a strong influence on the distribution of genetic heterogeneity, accounting for almost half of the variation in the data.

Conclusions

Here we show how huge barriers like the Andes and the regional environmental conditions imposed constraints on the ability of a parrot species to colonise new habitats, affecting the way in which populations diverged and thus, genetic structure. When contact between divergent populations was re-established, a stable hybrid zone was formed, functioning as a channel for genetic exchange between populations.  相似文献   

8.
Patterns of genetic structure and diversity are largely mediated by a species’ ecological niche and sensitivity to climate variation. Some species with narrow ecological niches have been found to exhibit increased population differentiation, limited gene flow across populations, and reduced population genetic diversity. In this study, we examine patterns of population genetic structure and diversity of four bumble bee species that are broadly sympatric, but do not necessarily inhabit the same ecological niche in the Pacific Northwest of the United States. Testing for the effect of isolation by geographic distance (IBD) with linearized F st and D est found that Bombus sylvicola and B. mixtus exhibited significant IBD across populations. In contrast, both B. melanopygus and B. flavifrons, two species that are distributed across a broad elevation gradient, exhibited no IBD, a result further corroborated by Bayesian a priori population assignment tests. Furthermore, we discovered that B. sylvicola populations distributed on the Olympic Peninsula have significantly less average allelic diversity than populations distributed in the Cascade Mountains. Our results suggest that populations distributed in the Olympic Mountains represent a distinct genetic cluster relative to the Cascade Mountains, with B. sylvicola and B. mixtus likely experiencing the greatest degree of population genetic differentiation relative to B. flavifrons and B. melanopygus. While bumble bees are known to co-exist across a diversity of habitats, our results demonstrate that underlying population genetic structure and diversity may not necessarily be similar across species, and are largely governed by their respective niches.  相似文献   

9.
Prodiplosis longifila Gagné (Diptera: Cecidomyiidae) is an insect pest that attacks various types of crops, including tomato, Solanum lycopersicum L. (Solanaceae), a vegetable with substantial economic significance worldwide. Prodiplosis longifila is a widely distributed pest in Colombia, Ecuador, and Peru, countries characterized by the presence of significant geographic barriers like the Andes Mountains. It has been reported that geographic barriers affect the dynamics and genetic differentiation of insect populations. Therefore, the aim of this study was to assess the diversity, genetic structure, and demographic history of P. longifila through the analysis of sequences within the mitochondrial region of cytochrome oxidase I (COI) and rDNA‐ITS2 in 27 populations located in Colombia and Ecuador. Analyses were performed on populations distributed in three geographic groups separated by the presence of the Andes Mountains. A total of 11 haplotypes were identified with the COI gene and only one haplotype in the rDNA‐ITS2 was found. Analyses of population structure and demographic history revealed that there is a structure associated with the Andes, which is reflected in an uneven distribution of the haplotype frequencies between regions, but even so, gene flow between populations was detected which produces low genetic differentiation. Because P. longifila has a short‐range dispersion that determines its territorial nature, it would be expected that other factors are producing the genetic exchange between populations. We suggest that the anthropogenic effect produced by farming practices, such as the use of seedlings as seed, which may carry P. longifila larvae, cause passive dispersal of pest throughout the Andes, particularly in Colombia.  相似文献   

10.
Phylogeographic studies often infer historical demographic processes underlying species distributions based on patterns of neutral genetic variation, but spatial variation in functionally important genes can provide additional insights about biogeographic history allowing for inferences about the potential role of adaptation in geographic range evolution. Integrating data from neutral markers and genes involved in oxygen (O2)‐transport physiology, we test historical hypotheses about colonization and gene flow across low‐ and high‐altitude regions in the Ruddy Duck (Oxyura jamaicensis), a widely distributed species in the New World. Using multilocus analyses that for the first time include populations from the Colombian Andes, we also examined the hypothesis that Ruddy Duck populations from northern South America are of hybrid origin. We found that neutral and functional genes appear to have moved into the Colombian Andes from both North America and southern South America, and that high‐altitude Colombian populations do not exhibit evidence of adaptation to hypoxia in hemoglobin genes. Therefore, the biogeographic history of Ruddy Ducks is likely more complex than previously inferred. Our new data raise questions about the hypothesis that adaptation via natural selection to high‐altitude conditions through amino acid replacements in the hemoglobin protein allowed Ruddy Ducks to disperse south along the high Andes into southern South America. The existence of shared genetic variation with populations from both North America and southern South America as well as private alleles suggests that the Colombian population of Ruddy Ducks may be of old hybrid origin. This study illustrates the breadth of inferences one can make by combining data from nuclear and functionally important loci in phylogeography, and underscores the importance of complete range‐wide sampling to study species history in complex landscapes.  相似文献   

11.
The tropical Andes represent one of the world's biodiversity hot spots, but the evolutionary drivers generating their striking species diversity still remain poorly understood. In the treeless high‐elevation Andean environments, Pleistocene glacial oscillations and niche differentiation are frequently hypothesized diversification mechanisms; however, sufficiently densely sampled population genetic data supporting this are still lacking. Here, we reconstruct the evolutionary history of Loricaria (Asteraceae), a plant genus endemic to the Andean treeless alpine zone, based on comprehensive population‐level sampling of 289 individuals from 67 populations across the entire distribution ranges of its northern Andean species. Partly incongruent AFLP and plastid DNA markers reveal that the distinct genetic structure was shaped by a complex interplay of biogeography (spread along and across the cordilleras), history (Pleistocene glacial oscillations) and local ecological conditions. While plastid variation documents an early split or colonization of the northern Andes by at least two lineages, one of which further diversified, a major split in the AFLP data correlate with altitudinal ecological differentiation. This suggests that niche shifts may be important drivers of Andean diversification not only in forest–alpine transitions, but also within the treeless alpine zone itself. The patterns of genetic differentiation at the intraspecific level reject the hypothesized separation in spatially isolated cordilleras and instead suggest extensive gene flow among populations from distinct mountain chains. Our study highlights that leveraging highly variable markers against extensive population‐level sampling is a promising approach to address mechanisms of rapid species diversifications.  相似文献   

12.
The yellow fever mosquito Aedes aegypti was introduced in Peru in 1852 and was considered to be eradicated in 1958. In 2001, Ae. aegypti had been recorded in 15 out of 24 Peruvian Departments. Peru has great ecological differences between the east and west sides of Andes. Because of this, we consider that Ae. aegypti populations of both east and west sides can have a genetically distinct population structure. In this study we examined genetic variability and genealogical relationships among three Ae. aegypti Peruvian populations: Lima, Piura (west Andes), and Iquitos (east Andes) using a fragment of the ND4 gene of the mitochondrial genome. Three haplotypes were detected among 55 samples. Lima and Iquitos showed the same haplotype (Haplotype I), whereas Piura has two haplotypes (Haplotype II and III). Haplotype II is four mutational steps apart from Haplotype I, while Haplotype III is 13 mutational steps apart from Haplotype I in the network. The analysis of molecular variation showed that mostly of the detected genetic variation occurs at interpopulational level. The significant value Phi(st) suggests that Piura population is structured in relation to Lima and Iquitos populations and the gene flow of the ND4 is restricted in Piura when compared to Lima and Iquitos. Genetic relationship between haplotype I and haplotype II suggests introduction of the same mtDNA lineage into those localities. However the existence of a genetically distant haplotype III also suggests introduction of at least two Ae. aegypti lineages in Peru.  相似文献   

13.
DNA sequence comparison of 412 base-pairs fragments of the mitochondrial cytochrome B gene was used to infer the genetic structure of nine geographical Triatoma infestans populations and their phylogenetic relationship with T. melanosoma and T. brasiliensis. T. infestans and T. melanosoma were compared by morphometry, allozyme and cytogenetic analyses, as well as subjected to reciprocal crosses, in order to clarify the taxonomic status of the latter. No differences were found to distinguish the two species and the crosses between them yielded progeny. T. infestans populations presented four haplotypes that could be separated in two clusters: one formed by the samples from Bolivia (Andes and Chaco) and the other formed by samples from Argentina and Brazil. Silvatic and domestic T. infestans populations from Bolivia (Andes) were genetically identical.  相似文献   

14.
Although Galápagos giant tortoises are an icon for both human-mediated biodiversity losses and conservation management successes, populations of two species on southern Isabela Island (Chelonoidis guntheri, and C. vicina) remain threatened by hunting and persistence of feral animals. Conservation management of these tortoises has been hampered by lack of clarity regarding their taxonomy, ecological and morphological diversity, and the spatial distribution of evolutionarily significant units that may exist. Analyses of 16 microsatellite loci did not group samples according to current taxonomy. Instead, three (rather than two) genetic clusters were revealed. We show that the three regions of southern Isabela associated with these genetic clusters are significantly different in their ecological niches, which could suggest that ecological divergence may have shaped patterns of genetic differentiation in these tortoises. Furthermore, results suggest limited recent gene flow among sampled localities and between each of the three regions associated with genetic clusters. We discuss the need for further research on the ecological factors shaping the genetic and morphological diversity of southern Isabela tortoises. We suggest that current strategies whereby populations are managed separately are warranted pending further study, but due to mixed ancestry we recommend that Cerro Paloma tortoises be excluded from management programs.  相似文献   

15.
Global biodiversity peaks in the tropical forests of the Andes, a striking geological feature that has likely been instrumental in generating biodiversity by providing opportunities for both vicariant and ecological speciation. However, the role of these mountains in the diversification of insects, which dominate biodiversity, has been poorly explored using phylogenetic methods. Here we study the role of the Andes in the evolution of a diverse Neotropical insect group, the clearwing butterflies. We used dated species-level phylogenies to investigate the time course of speciation and to infer ancestral elevation ranges for two diverse genera. We show that both genera likely originated at middle elevations in the Andes in the Middle Miocene, contrasting with most published results in vertebrates that point to a lowland origin. Although we detected a signature of vicariance caused by the uplift of the Andes at the Miocene–Pliocene boundary, most sister species were parapatric without any obvious vicariant barrier. Combined with an overall decelerating speciation rate, these results suggest an important role for ecological speciation and adaptive radiation, rather than simple vicariance.  相似文献   

16.
Aim Long‐term climatic variation has generated historical expansions and contractions of species ranges, with accompanying fragmentation and population bottlenecks, which are evidenced by spatial variation in genetic structure of populations. We examine here hypotheses concerning dispersal and vicariance in response to historical geoclimatic change and potential isolation produced by mountains and water barriers. Location The temperate rain forest of southern South America, which is distributed from coastal Chile, including the large continental island of Chiloé, across the Andes into Argentina. Methods We investigated our hypotheses in the phylogenetically and biogeographically relictual marsupial Dromiciops gliroides. We examined 56 specimens, which resulted from field samples and museum study skins from 21 localities. We evaluated the influence of two major barriers, the Andean cordillera and the waterway between the mainland and the large island of Chiloé, by performing Bayesian and maximum‐likelihood phylogenetic analyses on sequences of 877 base pairs of mitochondrial DNA. We further tested the contribution of the proposed geographical barriers using analysis of molecular variance (amova ). We also evaluated the responses of populations to historical north–south shifts of habitat associated with glacial history and sea‐level change. Results Our analyses revealed a phylogeny with three clades, two of which are widespread and contain nearly all the haplotypes: a northern clade (36–39° S) and a southern clade (40–43° S). These two clades contain forms from both sides of the Andes. Within the southern clade, island and mainland forms were not significantly differentiated. Tests of recent demographic change revealed that southern populations have experienced recent expansion, whereas northern populations exhibit long‐term stability. The direction of recent gene flow and range expansion is predominantly from Chile to Argentina, with a modest reciprocal exchange across the Andes. Recent gene flow from the island of Chiloé to the mainland is also supported. Main conclusions The genetic structure of contemporary D. gliroides populations suggests recent gene flow across the Andes and between the mainland and the island of Chiloé. Differences in demographic history that we detected between northern and southern populations have resulted from historical southward shifts of habitat associated with glacial recession in South America. Our results add to a growing literature that demonstrates the value of genetic data to illuminate how environmental history shapes species range and population structure.  相似文献   

17.
Ancient DNA was recovered from 17 individuals found in a rock shelter in the district of "La Purnia" (Santander, Colombia). This region is the homeland of pre-Columbian Guane, whom spread over the "Río Suarez" to the "Río de Oro", and were surrounded to the west by the Central Andes, south and east by foothills of Eastern Andes, and north by the "Chicamocha" river canyon. Guanes established in a region that straddles the Andes and the northern Amazon basin, possibly making it an unavoidable conduit for people moving to and from South America. We amplified mtDNA hypervariable region I (HVI) segments from ancient bone remains, and the resulting sequences were compared with both ancient and modern mitochondrial haplogroups from American and non-American populations. Samples showed a distribution of 35% for haplogroup A, 41% for haplogroup B and 24% for haplogroup D. Nine haplotypes were found in 17 samples, indicating an unusually high genetic diversity on a single site ancient population. Among them, three haplotypes have not been previously found in America, two are shared in Asia, and one is a private haplotype. Despite geographical barriers that eventually isolated them, an important influence of gene flow from neighboring pre-Columbian communities, mainly Muiscas, could explain the high genetic polymorphism of this community before the Spanish conquest, and argues against Guanes as being a genetic isolate.  相似文献   

18.
The extent to which convergent adaptation to similar ecological niches occurs by a predictable genetic basis remains a fundamental question in biology. Threespine stickleback fish have undergone an adaptive radiation in which ancestral oceanic populations repeatedly colonized and adapted to freshwater habitats. In multiple lakes in British Columbia, two different freshwater ecotypes have evolved: a deep‐bodied benthic form adapted to forage near the lake substrate, and a narrow‐bodied limnetic form adapted to forage in open water. Here, we use genome‐wide linkage mapping in marine × benthic F2 genetic crosses to test the extent of shared genomic regions underlying benthic adaptation in three benthic populations. We identify at least 100 Quantitative Trait Loci (QTL) harboring genes influencing skeletal morphology. The majority of QTL (57%) are unique to one cross. However, four genomic regions affecting eight craniofacial and armor phenotypes are found in all three benthic populations. We find that QTL are clustered in the genome and overlapping QTL regions are enriched for genomic signatures of natural selection. These findings suggest that benthic adaptation has occurred via both parallel and nonparallel genetic changes.  相似文献   

19.
In the southern Andes mountains (27–\(39{^{\circ }}\hbox {S}\)) Azorella madreporica and Laretia acaulis, two Apiaceae cushion plant species commonly known as yaretas, conform a well-established altitudinal vegetation belt along the lower Andean zone. These species have been considered as fundamental components of several ecological dynamics within their communities; however, high-mountain ecosystems are increasingly threatened worldwide by natural and anthropogenic pressures and the southern Andes are not the exception. Recognizing that genetic information is crucial for the success of any conservation or restoration initiative in wild populations, we developed and cross-amplified 28 specifically designed microsatellite markers (14 in A. madreporica and 14 in L. acaulis), and also tested the cross amplification of 25 markers from the related species Azorella selago. In a region which is particularly vulnerable to global change trends, this new polymorphic microsatellite loci will be useful in the study of the genetic diversity of these high-mountain cushion plants, which are pivotal in the structuring of their native ecosystems.  相似文献   

20.
Currently, one of the major debates about the American peopling focuses on the number of populations that originated the biological diversity found in the continent during the Holocene. The studies of craniometric variation in American human remains dating from that period have shown morphological differences between the earliest settlers of the continent and some of the later Amerindian populations. This led some investigators to suggest that these groups—known as Paleomericans and Amerindians respectively—may have arisen from two biologically different populations. On the other hand, most DNA studies performed over extant and ancient populations suggest a single migration of a population from Northeast Asia. Comparing craniometric and mtDNA data of diachronic samples from East Central Argentina dated from 8,000 to 400 years BP, we show here that even when the oldest individuals display traits attributable to Paleoamerican crania, they present the same mtDNA haplogroups as later populations with Amerindian morphology. A possible explanation for these results could be that the craniofacial differentiation was a local phenomenon resulting from random (i.e. genetic drift) and non-random factors (e.g. selection and plasticity). Local processes of morphological differentiation in America are a probable scenario if we take into consideration the rapid peopling and the great ecological diversity of this continent; nevertheless we will discuss alternative explanations as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号