首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao Chen 《BBA》2009,1787(5):553-2974
It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study showed that 3-BrPA caused a covalent modification of HKII protein and directly triggered its dissociation from mitochondria, leading to a specific release of apoptosis-inducing factor (AIF) from the mitochondria to cytosol and eventual cell death. Co-immunoprecipitation revealed a physical interaction between HKII and AIF. Using a competitive peptide of HKII, we showed that the dissociation of hexokinase II from mitochondria alone could cause apoptotic cell death, especially in the mitochondria-deficient ρ0 cells that highly express HKII. Interestingly, the dissociation of HKII itself did not directly affect the mitochondrial membrane potential, ROS generation, and oxidative phosphorylation. Our study suggests that the physical association between HKII and AIF is important for the normal localization of AIF in the mitochondria, and disruption of this protein complex by 3-BrPA leads to their release from the mitochondria and eventual cell death.  相似文献   

2.
p53, one of the most commonly mutated genes in human cancers, is thought to be associated with cancer development. Hence, screening and identifying natural or synthetic compounds with anti-cancer activity via p53-independent pathway is one of the most challenging tasks for scientists in this field. Compound JKA97 (methoxy-1-styryl-9H-pyrid-[3,4-b]-indole) is a small molecule synthetic anti-cancer agent, with unknown mechanism(s). In this study we have demonstrated that the anti-cancer activity of JKA97 is associated with apoptotic induction via p53-independent mechanisms. We found that co-incubation of human colon cancer HCT116 cells with JKA97 inhibited HCT116 cell anchorage-independent growth in vitro and tumorigenicity in nude mice and also induced a cell apoptotic response, both in the cell culture model and in a tumorigenesis nude mouse model. Further studies showed that JKA97-induced apoptosis was dramatically impaired in Bax knock-out (Bax(-/-)) HCT116 cells, whereas the knock-out of p53 or PUMA did not show any inhibitory effects. The p53-independent apoptotic induction by JKA97 was confirmed in other colon cancer and hepatocarcinoma cell lines. In addition, our results showed an induction of Bax translocation and cytochrome c release from the mitochondria to the cytosol in HCT116 cells, demonstrating that the compound induces apoptosis through a Bax-initiated mitochondria-dependent pathway. These studies provide a molecular basis for the therapeutic application of JKA97 against human cancers with p53 mutations.  相似文献   

3.
The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca2+ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca2+-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca2+. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia.  相似文献   

4.
It has been suggested that Bax translocation to the mitochondria is related to apoptosis, and that cytosol acidification contributes to apoptosis events. However, the mechanisms remain obscure. We investigated the effect of acidification on Bax translocation and on ultraviolet (UV) light-induced apoptosis. The Bax translocation assay in vitro showed that Bax translocated to the mitochondria at pH 6.5, whereas no Bax translocation was observed at pH 7.4. VHDBB cells expressing the GFP-Bax fusion protein were treated for 12 h with a pH 6.5 DMEM medium, nigericin (5 μg/ml) and UV light (50 J/cm2), separately or in combination, and Bax translocation to the mitochondria was determined by SDS-PAGE and Western blot, and apoptotic cell death was detected by flow cytometry. The results showed that some of the Bax translocated to the mitochondria in the cells treated with the normal medium, nigericin and UV in combination, whereas all of the Bax translocated to the mitochondria in the cells treated with the pH 6.5 medium, nigericin and UV in combination. In VHDBB cells treated for 12 h with nigericin, UV alone, and UV and nigericin in combination, the respective rates of apoptotic cell death were 25.08%, 33.25% and 52.88%. In cells treated with pH 6.5 medium and nigericin, pH 6.5 medium and UV, and pH 6.5 medium, nigericin and UV in combination, the respective rates of apoptotic cell death increased to 37.19%, 41.42% and 89.44%. Our results indicated that acidification induces Bax translocation from the cytosol to the mitochondria, and promotes UV lightmediated apoptosis. This suggests that there is a possibility of improving cancer treatment by combining acidification with irradiation or chemotherapeutic drugs.  相似文献   

5.
Previous study has found that a new nitroxyl spin-labeled derivative of podophyllotoxin, 4-[4″-(2″,2″,6″,6″-tetramethyl-1″-piperidinyloxy)amino]-4′-demethyl-epipodophyllotoxin (GP7), can induce apoptosis in human leukemia cells. However, there have been no studies about the effects of GP7 on osteosarcoma (OS) cells. Here, we observed the anti-OS effects of GP7 in mouse and human OS cells with the comparison of etoposide. GP7 and etoposide inhibited the proliferation of a panel of mouse and human OS cells in a concentration- or time-dependent manner, and the inhibitory effect of GP7 on the proliferation of mouse LM8 or human U2OS cells was 1.28- or 1.35-fold higher than that of etoposide. GP7 or etoposide augmented the anti-OS effects of methotrexate, adriamycin, cisplatin, or their combination, and the combined inhibitory effects of GP7 with MTX on the proliferation of LM8 cells was higher than those of etoposide with MTX. GP7 arrested the cell cycle in S phase but etoposide in G2/M phase. GP7 or etoposide induced sub-G1 peak, apoptotic DNA fragmentation, activations of caspase-3, -8, -9, and DNA fragmentation factor, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bak, and cytochrome-c release from mitochondria in both mouse and human OS cells. GP7 or etoposide also induced endonuclease G translocation from mitochondria into cytosol in mouse cells. GP7- or etoposide-induced apoptotic DNA fragmentation of human OS cells was inhibited by the pan caspase inhibitor and caspase-9 inhibitor, not by caspase-8 inhibitor whereas it was not inhibited by the pan caspase inhibitor in mouse OS cells. Our findings indicate that GP7 is effective against mouse and human OS cells in vitro. The apoptotic DNA fragmentation in mouse OS cells may be mediated by caspase-independent pathway with the involvement of endonuclease G whereas in human OS cells by caspase-9-dependent pathway downstream of the cytochrome-c-initiated caspase cascade.  相似文献   

6.
TNFalpha-related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in prostate cancer cells. However, some prostate cancer cells, such as LNCaP are resistant to TRAIL. In addition to the involvement of several pathways in the TRAIL-resistance of LNCaP, it has been shown that mitochondrial response to TRIAL is low in these cells. Therefore, in this study, using in vitro cell free and reconstitution models, we have demonstrated that mitochondria from these cells are capable of responding to apoptotic stimuli. Furthermore, experiments to determine the influence of cytochrome c on apoptotic response noted that incubation of cytosol with exogenous cytochrome c induced truncation of Bid. We have demonstrated that truncation of Bid by exogenous cytochrome c is mediated through the activation of caspases-9 and -3. Incubation of cytosol with recombinant caspases-9 and -3 in the absence or presence of inhibitors showed that activation of caspase-9, leading to the activation of caspase-3 was necessary for the truncation of Bid. Published results indicate that in apoptotic cells cytochrome c is released from the mitochondria in two installments, an early small amount and a late larger amount. Our results suggest that the initial release of cytochrome generates tBid that is capable of translocation into the mitochondria causing further release of cytochrome c. Thus, in addition to providing functional explanation for the biphasic release of cytochrome c from mitochondria, we demonstrate the presence of a feedback amplification of mitochondrial apoptotic signal.  相似文献   

7.
Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.  相似文献   

8.
The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgen sensitivity.  相似文献   

9.
Apoptosis, a programmed cell death, is an important control mechanism of cell homeostasis. Deficiency in apoptosis is one of the key features of cancer cells, allowing cells to escape from death. Activation of apoptotic signaling pathway has been a target of anti-cancer drugs in an induction of cytotoxicity. PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, has been reported to decrease the viability of cancer cells and attenuate xenograft tumor growth. However, the mechanism of the anti-cancer effect is still unclear. To evaluate whether the cytotoxicity of PQ1 is related to induction of apoptosis, the effect of PQ1 on apoptotic pathways was investigated in T47D breast cancer cells. PQ1-treated cells had an elevation of cleaved caspase-3 compared to controls. Studies of intrinsic apoptotic pathway showed that PQ1 can activate the intrinsic checkpoint protein caspase-9, enhance the level of pro-apoptotic protein Bax, and release cytochrome c from mitochondria to cytosol; however, PQ1 has no effect on the level of anti-apoptotic protein Bcl-2. Further studies also demonstrated that PQ1 can activate the key extrinsic player, caspase-8. Pre-treatment of T47D cells with caspase-8 or caspase-9 inhibitor suppressed the cell death induced by PQ1, while pre-treatment with caspase-3 inhibitor completely counteracted the effect of PQ1 on cell viability. This report provides evidence that PQ1 induces cytotoxicity via activation of both caspase-8 and caspase-9 in T47D breast cancer cells.  相似文献   

10.
We prepared GD3-7-aldehyde (GD3-7) and determined its apoptotic potential. GD3-7 proved to be more efficient to induce pro-apoptotic mitochondrial alterations than GD3 when tested on mouse liver mitochondria. GD3-7-induced mitochondrial swelling and depolarization was blocked by cyclosporin A (CsA) supporting a critical role of the permeability transition pore complex (PTPC) during GD3-7-mediated apoptosis. In contrast to GD3, GD3-7 was able to induce channel formation in proteoliposomes containing adenine nucleotide translocase (ANT). This suggests that ANT is the molecular target of GD3-7. Using a specific antiserum, GD3-7 was detected in the lipid extract of the myeloid tumor cell line HL-60 after apoptosis induction, but not in living cells. Therefore, GD3-7 might be a novel mediator of PTPC-dependent apoptosis in cancer cells.  相似文献   

11.
Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).  相似文献   

12.
In this work, the effects of a pair of positional isomer of ganoderic acids (GAs), namely ganoderic acid Mf (GA-Mf) and ganoderic acid S (GA-S) purified from the fermented mycelia of Ganoderma lucidum, on induction of cell apoptosis and the apoptotic pathway in HeLa cells were investigated. The results demonstrate that both isomers decreased cell population growth on various human carcinoma cell lines by MTT assay, while GA-Mf had better selectivity between normal and cancer cells. The flow cytometry analysis indicated that treatment of HeLa cells with GA-S caused cell cycle arrest in the S phase, while GA-Mf caused cell cycle arrest in the G1 phase. Compared with GA-S, GA-Mf had more potent increase in the number of early and late apoptotic cells. Treatment of HeLa cells with each isomer decreased the mitochondria membrane potential and caused the release of cytochrome c from mitochondria into the cytosol. In addition, stimulation of caspase-3 and caspase-9 activity was observed. The Bax/Bcl-2 ratio was also increased in GA-treated HeLa cells. The results demonstrated that both isomers GA-Mf and GA-S induced apoptosis of human HeLa cells through a mitochondria mediated pathway, but they had the different cell cycle arrest specificity. The findings will be helpful to the development of useful cancer chemopreventive compounds from G. lucidum.  相似文献   

13.
Goniothalamin (GTN), a plant bioactive styryl-lactone, is a natural product with potent anti-tumorigenesis effects for several types of cancer. Nonetheless, the anticancer effect of GTN has not been examined in oral cancer. The present study was designed to evaluate its potential anticancer effects in an oral squamous cell carcinoma (OSCC) model and to determine the possible mechanisms with respect to apoptosis, DNA damage, reactive oxygen species (ROS) induction, and mitochondrial membrane potential. Our data demonstrated that cell proliferation was significantly inhibited by GTN in Ca9-22 OSCC cancer cells in concentration- and time-dependent manners (p<0.05). For cell cycle and apoptotic effects of GTN-treated Ca9-22 cancer cells, the sub-G1 population and annexin V-intensity significantly increased in a concentration-dependent manner (p<0.001). For the analysis of DNA double strand breaks, γH2AX intensity significantly increased in GTN-treated Ca9-22 cancer cells in concentration-response relationship (p<0.05). Moreover, GTN significantly induced intracellular ROS levels in Ca9-22 cancer cells in a concentration- and time-dependent manner (p<0.05). For membrane depolarization of mitochondria, the DiOC(2)(3) (3,3'-diethyloxacarbocyanine iodide) intensity of GTN-treated Ca9-22 cancer cells was significantly decreased in concentration- and time-dependent relationships (p<0.001). Taken together, these results suggest that the anticancer effect of GTN against oral cancer cells is valid and GTN-induced growth inhibition and apoptosis influence the downstream cascade including ROS induction, DNA damage, and mitochondria membrane depolarization. Therefore, GTN has potential as a chemotherapeutic agent against oral cancer.  相似文献   

14.
Drug resistance of cancer cells is often correlated with the evasion of apoptosis, thus a major goal in cancer research is to search for compounds able to counteract cancer by promoting apoptosis. A variety of compounds with anticancer activity are characterised by the presence of the pyrazole as core nucleus. We synthesised a panel of pyrrolyl-pyrazole-carboxamides and we focused on the new compound RS 2780 (N-2-phenylethyl 1-(4-chlorophenyl)-3-methyl-5-pyrrolylpyrazole-4-carboxamide). The biological effects of RS 2780 on cell proliferation and viability were first evaluated on human HeLa cancer cells. As revealed by cell growth and viability experiments, a 24-h treatment of HeLa cells with increasing concentrations of RS 2780 (ranging from 0.1 to 100 μM) proved to inhibit cell proliferation and to affect cell viability. Notably, the new compound was effective also on colon carcinoma SW613-B3 cells, which are extremely resistant to most drugs, while it does not alter the proliferation of normal fibroblasts. We observed that RS 2780 interferes with the structural and functional properties of mitochondria, leading to the activation of the mitochondria-dependent apoptotic pathway. Apoptosis occurrence was supported by a number of morphological and biochemical hallmarks, including chromatin condensation, internucleosomal DNA fragmentation, PARP-1 cleavage and caspase activation. In conclusion, our results demonstrate for the first time the antiproliferative properties of the new compound RS 2780 on HeLa and SW613-B3 cancer cells and show that its effects on mitochondria lead to apoptosis.  相似文献   

15.
A new quinone compound, p-hydroxymethoxybenzobijuglone (HMBBJ), isolated from Juglans mandshurica by bioassay-guided fractionation, showed cytotoxic activity against HeLa cell line. Its chemical structure was determined by NMR and HREIMS spectra. In this paper, its ability to induce apoptosis in HeLa cells was studied for the first time. After treated with HMBBJ, the growth of HeLa cells was inhibited and cells displayed typical morphological apoptotic characteristics. Data from flow cytometry analysis showed that the HeLa cell cycle was arrested in the G2/M phase by HMBBJ, and the apoptotic rate of HeLa cells increased in a dose-dependent manner. Meanwhile, HMBBJ increased the expression of caspase-8, -3 and Bax, decreased the expression of Bcl-2, and lowered the ΔΨm. These findings reveal that HMBBJ could efficiently induce HeLa cells apoptosis through mitochondria dependent pathway and activation of the caspase cascade, and it may be a potential chemotherapeutic candidate for the treatment of cancer.  相似文献   

16.
Microtubule cytoskeleton is reformed during apoptosis, forming a cortical structure beneath plasma membrane, which plays an important role in preserving cell morphology and plasma membrane integrity. However, the maintenance of the apoptotic microtubule network (AMN) during apoptosis is not understood. In the present study, we examined apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. We demonstrate that AMN was organized in apoptotic cells with high ATP levels and hyperpolarized mitochondria and, on the contrary, was dismantled in apoptotic cells with low ATP levels and mitochondrial depolarization. AMN disorganization after mitochondrial depolarization was associated with increased plasma membrane permeability assessed by enhancing LDH release and increased intracellular calcium levels. Living cell imaging monitoring of both, microtubule dynamics and mitochondrial membrane potential, showed that AMN persists during apoptosis coinciding with cycles of mitochondrial hyperpolarization. Eventually, AMN was disorganized when mitochondria suffered a large depolarization and cell underwent secondary necrosis. AMN stabilization by taxol prevented LDH release and calcium influx even though mitochondria were depolarized, suggesting that AMN is essential for plasma membrane integrity. Furthermore, high ATP levels and mitochondria polarization collapse after oligomycin treatment in apoptotic cells suggest that ATP synthase works in “reverse” mode during apoptosis. These data provide new explanations for the role of AMN and mitochondria during apoptosis.  相似文献   

17.
Lactate production from glucose even in the presence of oxygen is a characteristic of cancer cell metabolism and an important feature for tumor progression. Here, we describe that an increased uptake of lactate into mitochondria of HT-29 human colon cancer cells by treatment of cells with the flavonoid flavone is associated with an increased production of mitochondrial superoxide anions and apoptotic cell death. In search of the mitochondrial transporter that could promote enhanced lactate uptake and energetic flow through the electron transport chain, we used fluorescein as a model substrate. Flavone increased fluorescein uptake at pH 7.4 into mitochondria of HT-29 cells almost tenfold while lactate inhibited uptake significantly. Uptake of fluorescein in the absence or presence of flavone was strongly increased by lowering pH from 7.4 to 6.0 and almost abolished by the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). The lactate-sensitive part of fluorescein transport was completely blocked by p-chloromercuribenzenesulfonic acid (pCMBS), a specific inhibitor of the monocarboxylate transporter-1 (MCT-1) that by Western blotting and immunofluorescence was identified in mitochondria of HT-29 cells. Finally, lactate increased and pCMBS inhibited the flavone-induced generation of mitochondrial O2-* radicals and in turn blunted the apoptotic response. In conclusion, our studies provide evidence that flavone reverts the metabolic phenotype of transformed colonocytes towards a phenotype characteristic for normal cells. Transformed colonocytes, however, seem especially vulnerable to O2-*, produced in mitochondria as a consequence of these metabolic alterations, and respond with the induction of apoptosis.  相似文献   

18.
We have shown previously that wild-type p53 renders H460 human lung cancer cells more sensitive to apoptosis induction by environmental carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), but the mechanism of cell death is not fully understood. The present study provides insights into the mechanism by which BPDE causes apoptosis in H460 cells. Exposure of H460 cells to BPDE resulted in a concentration-dependent apoptotic cell death characterized by cleavage of poly(ADP-ribose)polymerase, DNA condensation, and apoptotic histone-associated DNA fragments released into the cytosol. The BPDE-mediated release of apoptotic histone-associated DNA fragments into the cytosol was also observed in a normal bronchial epithelial cell line BEAS-2B. The BPDE-induced apoptosis in H460 cells correlated with up-regulation of pro-apoptotic protein Bak, down-regulation of anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-xL, release of cytochrome c from mitochondria to the cytosol without a change in mitochondrial membrane potential or mitochondrial morphology (electron microscopy), and cleavage of caspase-8, -9, and -3. Ectopic expression of Bcl-2 failed to confer significant protection against BPDE-induced apoptosis in H460 cells. The SV40 immortalized mouse embryonic fibroblasts (MEFs) derived from Bak and Bax double knockout mice, but not Bid knockout mice, were significantly more resistant to BPDE-induced apoptosis compared with the MEFs derived from wild-type mice. The BPDE-induced apoptosis was partially but statistically significantly attenuated in the presence of specific inhibitors of caspase-9 (z-LEHDfmk) and caspase-8 (z-IETDfmk). In conclusion, the present study reveals that BPDE-induced apoptosis in H460 cells is associated with Bak induction and caspase activation but independent of Bcl-2.  相似文献   

19.
Mitochondria as cancer drug targets   总被引:4,自引:0,他引:4  
Cancer cells are defined by their unlimited replicative potential and resistance to cell death stimuli. It is generally considered that a point of no return in apoptotic cell death is the permeabilisation of the mitochondrial membranes. For this reason, agents that permeabilise cancer cell mitochondria have the potential to circumvent their resistance to apoptotic cell death. Fortunately, the proliferative and bioenergetic differences between normal and cancerous cells provide an opportunity to selectively target cancer cell mitochondria.  相似文献   

20.
以地塞米松(DEX)诱导小鼠胸腺细胞凋亡;利用PI和AnneXin V/PI流式细胞术分别检测细胞晚期和早期凋亡;利用JC-1和DiOC_6(3)/PI在细胞水平检测凋亡中线粒体膜电势(△ψm)变化:抽提线粒体,利用JC-1直接染色技术检测现存线粒体△ψm情况。实验结果显示,DEX显著诱导胸腺细胞早期和晚期凋亡,凋亡细胞主要来自G_0/G_1期;细胞水平可见DEX介导与△ψm相关的J-aggregate和DiOC_6(3)可染性降低,同时介导线粒体数量显著降低,6h细胞膜完整性无显著变化:单纯线粒体检测结果显示,多数线粒体维持正常△ψm。提示,DEX介导胸腺细胞凋亡中线粒体数量降低,现存线粒体多保持着正常△ψm以维持凋亡过程细胞能量供给。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号