首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volatile fatty acids (VFAs) that can be derived from food wastes were used for microbial lipid production by Chlorella protothecoides in heterotrophic cultures. The usage of VFAs as carbon sources for lipid accumulation was investigated in batch cultures. Culture medium, culture temperature, and nitrogen sources were explored for lipid production in the heterotrophic cultivation. The concentration and the ratio of VFAs exhibited significant influence on cell growth and lipid accumulation. The highest lipid yield coefficient and lipid content of C. protothecoides grown on VFAs were 0.187 g/g and 48.7 %, respectively. The lipid content and fatty acids produced using VFAs as carbon sources were similar to those seen on growth and production using glucose. The techno-economic analysis indicates that the biodiesel derived from the lipids produced by heterotrophic C. protothecoides with VFAs as carbon sources is very promising and competitive with other biofuels and fossil fuels.  相似文献   

2.
Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel and added-value compounds production. To this end, new oleaginous yeast, Candida viswanathii Y-E4 was isolated, characterized and used for single cell oil (SCO) production. Physiologic and nutritional parameters optimization was carried out for improved biomass and lipid production. Y-E4 strain was able to use a wide range of substrates, especially C5 and C6 sugars as well as glycerol and hydrophobic substrates. The fatty acid profile analysis showed that oleic acid was the main component produced using different substrates. Batch and fed-bath fermentation were conducted using glucose as carbon source. Lipid production rate is twice higher in fed-batch culture providing a lipid content of 50 % (w/w). To minimize the SCO production cost, C. viswanathii Y-E4 was evaluated for its capacity to use different agro-industrial by-products for microbial oil production and changes in the fatty acid profile were monitored.  相似文献   

3.
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H‐984) grown in varying ratios of glucose‐corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first‐order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3) in G. fujikuroi. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1169–1180, 2013  相似文献   

4.
Utilization of lipids-free waxy starch by distillery yeasts in fuel ethanol production can contribute to better management of renewable resources, like cereals, especially maize Zea mays L. But the efficient conversion of starch into glucose-rich fermentable substrate, and subsequently to ethanol, needs more research on hydrolysis and fermentation conditions. The aim of this study was to evaluate the lack of natural corn grain lipids on the process of simultaneous saccharification and fermentation using chemometric techniques of designed experiments, commercial enzymatic preparations and distillery yeasts Saccharomyces cerevisiae CCY-11-3. Based on the results and statistical software support we can conclude that extraction of lipids from corn grains did not lead to statistically significant increase or decrease of glucose concentration in starch hydrolysis. The ethanol concentration in fermentation mash according to analysis was not statistically significantly affected by lipids extraction. The separated lipids could serve as a source of very valuable corn oil.  相似文献   

5.
Some aspects on the action of vegetable and animal oils and fatty acids on growth and protease synthesis of T. vulgaris were studied to interpret the stimulating effect of these substance. It was found that oil does not influence the hydrolysis of the substrate casein by the protease. However, the effect on the gas exchange during fermentation has a substantial importance. Furthermore, the metabolization of lipids shows that they play a role as carbon source.  相似文献   

6.
Fatty acids are the primary energy source for the heart. The heart acquires fatty acids associated with albumin or derived from lipoprotein lipase (LpL)-mediated hydrolysis of lipoprotein triglyceride (TG). We generated heart-specific LpL knock-out mice (hLpL0) to determine whether cardiac LpL modulates the actions of peroxisome proliferator-activated receptors and affects whole body lipid metabolism. Male hLpL0 mice had significantly elevated plasma TG levels and decreased clearance of postprandial lipids despite normal postheparin plasma LpL activity. Very large density lipoprotein-TG uptake was decreased by 72% in hLpL0 hearts. However, heart uptake of albumin-bound free fatty acids was not altered. Northern blot analysis revealed a decrease in the expression of peroxisome proliferator-activated receptor alpha-response genes involved in fatty acid beta-oxidation. Surprisingly, the expression of glucose transporters 1 and 4 and insulin receptor substrate 2 was increased and that of pyruvate dehydrogenase kinase 4 and insulin receptor substrate 1 was reduced. Basal glucose uptake was increased markedly in hLpL0 hearts. Thus, the loss of LpL in the heart leads to defective plasma metabolism of TG. Moreover, fatty acids derived from lipoprotein TG and not just albumin-associated fatty acids are important for cardiac lipid metabolism and gene regulation.  相似文献   

7.
Traditional synthesis of biodiesel competes with food sources and has limitations with storage, particularly due to limited oxidative stability. Microbial synthesis of lipids provides a platform to produce renewable fuel with improved properties from various renewable carbon sources. Specifically, biodiesel properties can be improved through the introduction of a cyclopropane ring in place of a double bond. In this study, we demonstrate the production of C19 cyclopropanated fatty acids in the oleaginous yeast Yarrowia lipolytica through the heterologous expression of the Escherichia coli cyclopropane fatty acid synthase. Ultimately, we establish a strain capable of 3.03?±?0.26 g/L C19 cyclopropanated fatty acid production in bioreactor fermentation where this functionalized lipid comprises over 32% of the total lipid pool. This study provides a demonstration of the flexibility of lipid metabolism in Y. lipolytica to produce specialized fatty acids.  相似文献   

8.
When E. coli ML 30 is grown in batch culture on a mineral salt medium containing a mixed carbon source of glucose and pyruvate, there is no sequential utilization of the carbon sources. The consumption of glucose and pyruvate takes place simultaneously with reciprocal influence (inhibition) on rates of substrate uptake. The specific growth rate is greater than mupmax for pyruvate but smaller than musmax for glucose. In the paper three cases of kinetics of growth and of substrate consumption at several combinations of initial substrate concentrations are considered. A mathematical model is proposed and investigated. The model allows to describe the growth on glucose or on pyruvate not only as singular carbon sources, but also as a mixed carbon source with reciprocal inhibition on rates of substrate uptake. By data fitting parameters of growth and substrate consumption were found.  相似文献   

9.
The native strain Yarrowia lipolytica VKMY-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapesseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.  相似文献   

10.
The fatty acid composition of the lipids of a Wautersia eutropha polyhydroxyalkanoate-producing strain was studied by chromato-mass spectrometry. A total of 27 fatty acids were identified; their distribution in the cell fractions was determined. In the cytoplasmic membrane, palmitic, palmitoleic, and cis-vaccenic acids were the major components. Long-chain β-hydroxy acids and myristic acids (components of the lipopolysaccharides of the cell envelope) predominated in the fraction of strongly bound lipids. When the polymer was actively synthesized, the content of cyclopropane acids in the easily extracted lipids increased and the content of the corresponding monoenoic acids decreased. The strongly bound lipids had a high content of long-chain β-hydroxy acids (more than 50% of the total fatty acids). These results made it possible to determine the source of polyhydroxyalkanoate (PHA) contamination and to choose the strategy for their purification.  相似文献   

11.
A Mexican strain of Talaromyces stollii LV186 was isolated from decaying pretreated corn stover. The production of cellulase and xylanase enzyme cocktails was evaluated with corn and sorghum stover used as inducers in a mineral medium. The volumetric and specific activities of T. stollii LV186 were compared with the values produced by Trichoderma reesei ATCC 26921 in a time-course experiment. After the submerged culture and a posterior ultrafiltration stage, the enzyme complexes were evaluated over acid-pretreated corn or sorghum stover in baffled flasks under controlled temperature and agitation conditions, and hydrolysis levels of 30 and 39 % of the theoretical maximum were obtained after only 72-h reactions, for each substrate. A side-by-side comparison showed a better ratio of endoglucanase to cellobiohydrolase to β-glucosidase and of xylanase to β-xylosidase enzymes in T. stollii than in T. reesei ATCC 26921. Furthermore, the hydrolysis of pretreated corn and sorghum stover achieved by T. stollii is significantly higher compared with that of a commercial cocktail from T. reesei ATCC 26921 (Celluclast). Therefore, the T. stollii LV186 strain is a good candidate for the hydrolysis of complex lignocellulose substrates. To the authors’ knowledge, this study is the first to describe the cellulolytic and hemicellulolytic activities produced by a T. stollii strain.  相似文献   

12.
The temperature of C. japonica cultivation influences the lipid content and composition of acyl chains, especially the content of such polyunsaturated acids as linoleic and linolenic. Thermal adaptation is accompanied by the modulation of fatty acid isomeric composition and acyl chain length and, at low temperatures, promotes the appearance of fatty acids uncommon to the fungus, in particular, arachidonic acid. The changes occur on a background of significant alterations in the fungus metabolism (in glucose uptake, ATP content, economic coefficient value, etc.). In experiments on the inhibition of translation with cycloheximide, abrupt temperature change (supraoptimal to cold) did not lead to desaturase de novo synthesis, but rather stimulated the activity of the named enzymes, except for palmitoleoyl-CoA desaturase. In the process of temperature adaptation, polar lipid microviscosity modulating compounds influenced fatty acid acyl chain composition. Microviscosity differences between polar and neutral lipids and correlation to the degree of fatty acid unsaturation during temperature fluctuation were established.  相似文献   

13.

Introduction

Saccharomyces cerevisiae has been widely used for fermenting food and beverages for over thousands years. Its metabolism together with the substrate composition play an important role in determining the characteristics of the final fermented products. We previously showed that the polyunsaturated fatty acid, linoleic acid, which is present in the grape juice at trace levels, significantly affected the development of aroma compounds of the wines. However, the effect of linoleic acid on the overall cell metabolism of S. cerevisiae is still not clear. Therefore, we aimed to unlock the metabolic response of S. cerevisiae to linoleic acid using metabolomics and isotope labelling experiments.

Methods

We cultured the cells on a minimal mineral medium supplementing them with linoleic acid isomers and 13C-linoleic acid. Both intracellular and extracellular metabolite profiles were determined using gas chromatography coupled to mass spectrometry (GC–MS) to investigate which S. cerevisiae pathways were affected by linoleic acid supplementation.

Results

The utilisation of linoleic acid by S. cerevisiae had a significant impact on the primary carbon metabolism increasing the glucose consumption and the ethanol production under anaerobic condition. The energetic state of the cell was, therefore, affected and the glycolytic pathway, the TCA cycle and the amino acid production were up-regulated. We also observed that linoleic acid was transported into the cell and converted into other fatty acids affecting their profile even under anaerobic condition.

Conclusion

Our data clearly shows that linoleic acid supplementation in growth medium increased glucose consumption and ethanol production by S. cerevisiae under anaerobic condition. We also suggest that S. cerevisiae might be able to perform an alternative anaerobic pathway to β-oxidation, which has not been reported yet.
  相似文献   

14.
The heterologous biosynthesis of 6-deoxyerythronolide B (6dEB), a key intermediate in the biosynthesis of erythromycin, has recently been achieved in Escherichia coli, but the experimental product yield remains low. In this study, in silico strategies were adopted to evaluate and improve the biosynthesis of 6dEB in this strain. The theoretical capability of E. coli to produce 6dEB was first evaluated by analyzing the maximum theoretical molar yield (MTMY) of 6dEB utilizing three carbon sources, glucose, propionate and glycerol. Although propionate is presently most often used experimentally, our results indicated that glucose would be the most feasible substrate for 6dEB production from economic and long-term standpoints. Compared with Saccharomyces cerevisiae and Bacillus subtilis, E. coli was found to be a better heterologous host for the biosynthesis of 6dEB due to the higher MTMY value under the same conditions. Two strategies, including a flux distribution comparison analysis (FDCA) and linear minimization of metabolic adjustment based (LMOMA-based) methods, were proposed and employed for in silico strain improvement of 6dEB production, which yielded several potential gene targets for future experimental validation. In a further analysis, increasing the specific growth rate (SGR) or the non-growth associated maintenance (NGAM) was found to decrease the MTMY; while increasing the specific oxygen uptake rate (SOUR) or the specific carbon source uptake rate (SCUR) increased the MTMY. Taken together, our findings identified key factors directly affecting the MTMY of 6dEB production, which will guide future experimental research or even the industrial production of 6dEB.  相似文献   

15.
Algae are able to adjust their metabolism according to their environment, maximizing growth rate and production of biomolecules under adverse conditions such as pulses of excess of a contaminant or limitation of a nutrient. In order to evaluate the effects of phosphorus (P) availability on the biochemical composition of the freshwater microalga Selenastrum gracile, we acclimated the microalgae to different phosphorus concentrations. After acclimation, exponentially growing cells were inoculated and after 120 h, samples were processed for the determination of carbohydrate, lipid, fatty acid, chlorophyll, cell density, growth rate, and dry weight. Cell density, growth rate, and dry weight decreased with less P, while chlorophyll a, carbohydrates, lipids, and fatty acids per cell increased under P limitation. According to our lipid class and fatty acid results, algae alter their metabolism and membrane configuration to avoid more structural or metabolic damage under limitation, especially at 23 μmol P L?1. The most sensitive parameters under P limitation were chlorophyll a, lipids, and poly- and monounsaturated fatty acids. The changes in fatty acids contributed to the fluorescence and photosynthesis changes under P limitation, and they occurred before changes were detected in other parameters, such as growth rate. Furthermore, we suggest that prior acclimation to different P affected microalgal physiology and metabolism.  相似文献   

16.
Acetic acid is an important chemical raw material that can be produced directly from sugars in lignocellulosic biomass. Development of kinetic models that capture the bioconversion dynamics of multiple sugar systems will be critical to optimization and process control in future lignocellulosic biorefinery processes. In this work, a kinetic model was developed for the single- and dual-substrate conversion of xylose and glucose to acetic acid using the acetogen Moorella thermoacetica. Batch fermentations were performed experimentally at 20 g L?1 total sugar concentration using synthetic glucose, xylose, and a mixture of glucose and xylose at a 1:1 ratio. The product yield, calculated as total product formed divided by total sugars consumed, was 79.2, 69.9, and 69.7 % for conversion of glucose, xylose, and a mixture of glucose and xylose (1:1 ratio), respectively. During dual-substrate fermentation, M. thermoacetica demonstrated diauxic growth where xylose (the preferred substrate) was almost entirely consumed before consumption of glucose began. Kinetic parameters were similar for the single-substrate fermentations, and a strong linear correlation was determined between the maximum specific growth rate μ max and substrate inhibition constant, K s . Parameters estimated for the dual-substrate system demonstrated changes in the specific growth rate of both xylose and glucose consumption. In particular, the maximum growth rate related to glucose tripled compared to the single-substrate system. Kinetic growth is affected when multiple substrates are present in a fermentation system, and models should be developed to reflect these features.  相似文献   

17.
In this study, confocal Raman microspectroscopy was used to detect lipids in microalgae rapidly and non-destructively. Microalgae cells were cultured under nitrogen deficiency. The accumulation of lipids in Scenedesmus obliquus was observed by Nile red staining, and the total amount of lipids accumulated in the cells was measured by gravimetric method. The signals from different microalgae cells were collected by confocal Raman microspectroscopy to establish a prediction model of intracellular lipid content, and surface scanning signals for drawing pseudo color images of lipids distribution. The images can show the location of pyrenoid and lipid accumulation in cells. Analyze Raman spectrum data and build PCA-LDA model using four different bands (full bands, pigments, lipids, and mixed features). Models of full bands or pigment characteristic bands were capable of identifying S. obliquus cells under different nitrogen stress culture time. The prediction accuracy of model of lipid characteristic bands is relatively low. The correlation between the fatty acid content measured by the gravimetric method and the integral Raman intensity of the oil characteristic peak (1445 cm?1) measured by Raman spectroscopy was analyzed. There was significant correlation (R 2 = 0.83), which means that Raman spectroscopy is applicable to semi-quantitative detection of microalgal lipid content.  相似文献   

18.
Biodiesel is produced worldwide as an alternative energy fuel and substitute for petroleum. Biodiesel is often obtained from vegetable oil, but production of biodiesel from plants requires additional land for growing crops and can affect the global food supply. Consequently, it is necessary to develop appropriate microorganisms for the development of an alternative biodiesel feedstock. Escherichia coli is suitable for the production of biodiesel feedstocks since it can synthesize fatty acids for lipid production, grows well, and is amenable to genetic engineering. Recombinant E. coli was designed and constructed for the production of biodiesel with improved unsaturated fatty acid contents via regulation of the FAS pathway consisting of initiation, elongation, and termination steps. Here, we investigated the effects of fabA, fabB, and fabF gene expression on the production of unsaturated fatty acids and observed that the concentration of cis-vaccenic acid, a major component of unsaturated fatty acids, increased 1.77-fold compared to that of the control strain. We also introduced the genes which synthesize malonyl-ACP used during initiation step of fatty acid synthesis and the genes which produce free fatty acids during termination step to study the effect of combination of genes in elongation step and other steps. The total fatty acid content of this strain increased by 35.7% compared to that of the control strain. The amounts of unsaturated fatty acids and cis-vaccenic acid increased by 3.27 and 3.37-fold, respectively.  相似文献   

19.
A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6′-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8′-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane, and 1,3-dihydroxyphenyl-5-cis-10′-heptadecene, respectively, based on the spectral data and biosynthetic origin. Expression of SsARS in the yeast also led to the synthesis of the same polyketide products, indicating that this enzyme can be reconstituted in both heterologous hosts. Supplementation of soybean oil into the culture of E. coli BL21(DE3)/SsARS increased the production titers of 1–6 and led to the synthesis of an additional product, which was identified as 5-(8′Z,11′Z-heptadecadienyl) resorcinol. This work thus allowed the identification of SsARS as a 5-alk(en)ylresorcinol synthase with flexible substrate specificity toward endogenous and exogenous fatty acids. Desired resorcinol derivatives may be synthesized by supplying corresponding fatty acids into the culture medium.  相似文献   

20.
A mixed trophic state production process for algal lipids for use as feedstock for renewable biofuel production was developed and deployed at subpilot scale using a green microalga, Auxenochlorella (Chlorella) protothecoides. The process is composed of two separate stages: (1) the photoautotrophic stage, focused on biomass production in open ponds, and (2) the heterotrophic stage focused on lipid production and accumulation in aerobic bioreactors using fixed carbon substrates (e.g., sugar). The process achieved biomass and lipid productivities of 0.5 and 0.27 g/L/h that were, respectively, over 250 and 670 times higher than those obtained from the photoautotrophic cultivation stage. The biomass oil content (over 60 % w/DCW) following the two-stage process was predominantly monounsaturated fatty acids (~82 %) and largely free of contaminating pigments that is more suitable for biodiesel production than photosynthetically generated lipid. Similar process performances were obtained using cassava hydrolysate as an alternative feedstock to glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号