首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Napier stunt phytoplasma (16SrXI and 16SrIII) in eastern Africa is a serious threat to the expansion of Napier grass (Pennisetum purpureum) farming in the region, where it is widely cultivated as fodder in zero grazing livestock systems. The grass has high potential for bio-fuel production, and has been adopted by farmers as a countermeasure to cereal stem borer Lepidoptera, since it attracts and traps the insect. Diagnosis of stunt phytoplasma have been largely by nested polymerase chain reaction (nPCR) targeting the 16S rRNA gene. However, the method is laborious, costly and technically demanding. This investigation has developed a simpler but effective phytoplasma diagnostic tool, called; loop-mediated isothermal amplification of DNA (LAMP). The assay was tested on 8 symptomatic and 8 asymptomatic plants, while its detection limit was compared to nested PCR using samples serially diluted from 3 ng/μl to 0.38 pg/μl. Molecular typing of LAMP products was determined by BsrI restriction digestion and Southern blot analysis. The assay sensitivity, positive and negative predictive values were estimated, while the specificity was tested on 11 phytoplasma groups. LAMP was specific to 5 phytoplasma groups: 16SrVI, X, XI and XVI. BsrI restriction digestion produced two predicted fragments, and there was specific binding of probe DNA to the LAMP amplicons in Southern blot analysis. The assay sensitivity was 100%, while the positive and negative predictive values were 63 and 100% respectively. LAMP was 20-fold more sensitive than nested PCR. This study validates LAMP for routine diagnosis of Napier stunt and other closely related phytoplasmas.  相似文献   

2.
DNA环介导恒温扩增技术快速检测霍乱弧菌   总被引:1,自引:0,他引:1  
霍乱弧菌是一种重要的食源性致病菌,主要引起急性肠道传染病,其快速检测具有重要意义。根据霍乱弧菌的mdh管家基因序列,设计2对特异性检测引物,利用DNA环介导恒温扩增技术(Loop-mediated isothermal amplification,LAMP),经反应体系优化,成功建立了霍乱弧菌的LAMP快速检测方法。该方法最佳反应温度为65℃,60min完成检测,对培养菌的检测限为25CFU/mL,污染食品中霍乱弧菌的检测限为32CFU/g。对33株同种或近源细菌进行LAMP检测,仅霍乱弧菌得到阳性扩增。LAMP方法实践应用结果表明,对1057份虾、蟹、牡蛎、肉类、人腹泻物等样本进行检测,共检出85份阳性,与国际标准(ISO TS21872-1-2007)检测结果的符合率为100%。结果表明,本研究建立的霍乱弧菌LAMP检测方法特异性强、灵敏度高、操作简便,有利于霍乱弧菌疫情的监测。  相似文献   

3.
Aim: To develop a detection assay for staphylococcal mecA and spa by using loop‐mediated isothermal amplification (LAMP) method. Methods and Results: Staphylococcus aureus and other related species were subjected to the detection of mecA and spa by both PCR and LAMP methods. The LAMP successfully amplified the genes under isothermal conditions at 64°C within 60 min, and demonstrated identical results with the conventional PCR methods. The detection limits of the LAMP for mecA and spa, by gel electrophoresis, were 102 and 10 cells per tube, respectively. The naked‐eye inspections were possible with 103 and 10 cells for detection of mecA and spa, respectively. The LAMP method was then applied to sputum and dental plaque samples. The LAMP and PCR demonstrated identical results for the plaque samples, although frequency in detection of mecA and spa by the LAMP was relatively lower for the sputum samples when compared to the PCR methods. Conclusion: Application of the LAMP enabled a rapid detection assay for mecA and spa. The assay may be applicable to clinical plaque samples. Significance and Impact of the Study: The LAMP offers an alternative detection assay for mecA and spa with a great advantage of the rapidity.  相似文献   

4.
Phytoplasma, the pathogen of yellow leaf disease (YLD) of arecanut (Areca catechu L.) was detected by transmission and scanning electron microscopy. Tissues of YLD affected palms contained phytoplasmas in the phloem sieve elements, but not in symptomless healthy palm tissues. Phytoplasma was purified from tissues of diseased palms employing percoll density gradient centrifugation and confirmed by transmission electron microscopy. Using the purified phytoplasma preparation, a polyclonal antiserum was raised in rabbits and used for standardisation of agar gel double diffusion (Ouchterlony) test and DAC-ELISA. Clear precipitin line was observed in Ouchterlony test between the antigen from diseased palms and the pathogen-specific antibodies after 48 h incubation and only undiluted antiserum showed best result in the test. However, in ELISA, 1:10 antigen dilution and 1:400 pathogen-specific antibodies dilution produced sensitive detection of the pathogen with a difference of >3.5 times absorption values between healthy and diseased samples. The results thus confirmed the ability of antiserum to distinguish healthy and infected plants and utility of ELISA for effective diagnosis of YLD.  相似文献   

5.
Loop-mediated isothermal amplification (LAMP) of DNA is a novel technique that rapidly amplifies target DNA under isothermal conditions. In the present study, a LAMP test was designed from the serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense, the cause of the acute form of African sleeping sickness, and used to detect parasite DNA from processed and heat-treated infected blood samples. The SRA gene is specific to T. b. rhodesiense and has been shown to confer resistance to lysis by normal human serum. The assay was performed at 62 degrees C for 1 h, using six primers that recognised eight targets. The template was varying concentrations of trypanosome DNA and supernatant from heat-treated infected blood samples. The resulting amplicons were detected using SYTO-9 fluorescence dye in a real-time thermocycler, visual observation after the addition of SYBR Green I, and gel electrophoresis. DNA amplification was detected within 35 min. The SRA LAMP test had an unequivocal detection limit of one pg of purified DNA (equivalent to 10 trypanosomes/ml) and 0.1 pg (1 trypanosome/ml) using heat-treated buffy coat, while the detection limit for conventional SRA PCR was approximately 1,000 trypanosomes/ml. The expected LAMP amplicon was confirmed through restriction enzyme RsaI digestion, identical melt curves, and sequence analysis. The reproducibility of the SRA LAMP assay using water bath and heat-processed template, and the ease in results readout show great potential for the diagnosis of T. b. rhodesiense in endemic regions.  相似文献   

6.
7.
Opisthorchis viverrini and other foodborne trematode infections are major health problem in Thailand, the Lao People's Democratic Republic, Vietnam and Cambodia. Differential diagnosis of O. viverrini based on the microscopic observation of parasite eggs is difficult in areas where Clonorchis sinensis and minute intestinal flukes coexist. We therefore established a rapid, sensitive and specific method for detecting O. viverrini infection from the stool samples using the loop-mediated isothermal amplification (LAMP) method. A total of five primers from seven regions were designed to target the internal transcribed spacer 1 (ITS1) in ribosomal DNA for specific amplification. Hydroxy naphthol blue (HNB) was more effective to detect the LAMP product compared to the Real-time LAMP and turbidity assay for its simple and distinct detection. The LAMP assay specifically amplified O. viverrini ITS1 but not C. sinensis and minute intestinal flukes with the limit of detection around 10− 3 ng DNA/μL. The sensitivity of the LAMP was 100% compared to egg positive samples. While all microscopically positive samples were positive by LAMP, additionally 5 of 13 (38.5%) microscopically negative samples were also LAMP positive. The technique has great potential for differential diagnosis in endemic areas with mixed O. viverrini and intestinal fluke infections. As it is an easy and simple method, the LAMP is potentially applicable for point-of-care diagnosis.  相似文献   

8.
9.
As the human genome is decoded and its involvement in diseases is being revealed through postgenome research, increased adoption of genetic testing is expected. Critical to such testing methods is the ease of implementation and comprehensible presentation of amplification results. Loop-mediated isothermal amplification (LAMP) is a simple, rapid, specific and cost-effective nucleic acid amplification method when compared to PCR, nucleic acid sequence-based amplification, self-sustained sequence replication and strand displacement amplification. This protocol details an improved simple visual detection system for the results of the LAMP reaction. In LAMP, a large amount of DNA is synthesized, yielding a large pyrophosphate ion by-product. Pyrophosphate ion combines with divalent metallic ion to form an insoluble salt. Adding manganous ion and calcein, a fluorescent metal indicator, to the reaction solution allows a visualization of substantial alteration of the fluorescence during the one-step amplification reaction, which takes 30-60 min. As the signal recognition is highly sensitive, this system enables visual discrimination of results without costly specialized equipment. This detection method should be helpful in basic research on medicine and pharmacy, environmental hygiene, point-of-care testing and more.  相似文献   

10.
Invasive Aedes mosquito species (Diptera: Culicidae) are of public health concern in Europe because they are either recognized or potential vectors of pathogens. Loop‐mediated isothermal amplification (LAMP) is a rapid and simple method for amplifying DNA with high specificity and efficiency, with the technique having potential for application in the field, including in high‐throughput format. Specific LAMP assays based on rDNA internal transcribed spacers 1 or 2 sequences, considering intraspecies variability at these loci, were developed for Aedes aegypti, Aedes albopictus, Aedes japonicus, Aedes koreicus and the indigenous Aedes geniculatus. No such assays could be developed for Aedes atropalpus and Aedes triseriatus because both loci were too short to serve as target. The assays rely on the clearly visible colour change from violet to sky blue after successful amplification. Sensitivity of egg detection was confirmed with ratios of up to one mosquito egg in 99 other eggs. Simple sample preparation of adults or eggs by mechanical homogenization in water required an additional heat treatment or centrifugation step to avoid non‐specific colour changes. Thus, further technical improvements are needed to render these assays truly field‐applicable, which would greatly facilitate surveillance of these invasive mosquito species and allow for prompt implementation of control measures.  相似文献   

11.
Bovine tuberculosis (TB) caused by Mycobacterium bovis is a significant health threat to cattle and a zoonotic threat for humans in many developing countries. Rapid and accurate detection of M. bovis is fundamental for controlling the disease in animals and humans, and for the proper treatment of patients as one of the first-line anti-TB drug, pyrazinamide, is ineffective against M. bovis. Currently, there are no rapid, simplified and low-cost diagnostic methods that can be easily integrated for use in many developing countries. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for specific identification of M. bovis by targeting the region of difference 4 (RD4), a 12.7 kb genomic region that is deleted solely in M. bovis. The assay''s specificity was evaluated using 139 isolates comprising 65 M. bovis isolates, 40 M. tuberculosis isolates, seven M. tuberculosis complex reference strains, 22 non-tuberculous mycobacteria and five other bacteria. The established LAMP detected only M. bovis isolates as positive and no false positives were observed using the other mycobacteria and non-mycobacteria tested. Our LAMP assay detected as low as 10 copies of M. bovis genomic DNA within 40 minutes. The procedure of LAMP is simple with an incubation at a constant temperature. Results are observed with the naked eye by a color change, and there is no need for expensive equipment. The established LAMP can be used for the detection of M. bovis infections in cattle and humans in resource-limited areas.  相似文献   

12.
Current methods of TB diagnosis are time consuming and less suited for developing countries. The LAMP (loop mediated isothermal amplification) is a rapid method more suitable for diagnosis in resource limited settings and has been proposed as a viable test requiring further evaluation for use as a laboratory method as well. We evaluated two LAMP assays, using culture lysates of clinical sputum samples (from Southern India) and compared it to a proprietary multiplex PCR reverse-hybridization line probe assay (‘GenoType MTBC’ from HAIN Lifescience GmbH, Germany). The LAMP procedure was modified to suit the local conditions. The Mycobacterium tuberculosis specific LAMP assay (‘MTB LAMP’) showed sensitivity and specificity, of 44.7% and 94.4% respectively in a 60 min format, 85.7% and 93.9% respectively in a 90 min format and 91.7%, and 90.9% respectively in a 120 min format. The Mycobacteria universal LAMP assay (‘Muniv LAMP’) showed a sensitivity of 99.1%. The LAMP was shown to be a rapid and accessible assay for the laboratory identification of M. tuberculosis isolates. Initial denaturation of template was shown to be essential for amplification in unpurified/dilute samples and longer incubation was shown to increase the sensitivity. The need for modification of protocols to yield better efficacy in this scenario needs to be addressed in subsequent studies.  相似文献   

13.
A loop-mediated isothermal amplification (LAMP) assay was developed for rapid, specific and sensitive detection of Renibacterium salmoninarum in 1 h without thermal cycling. A fragment of R. salmoninarum p57 gene was amplified at 63 degrees C in the presence of Bst polymerase and a specially designed primer mixture. The specificity of the BKD-LAMP assay was demonstrated by the absence of any cross reaction with other bacterial strains, followed by restriction digestion of the amplified products. Detections of BKD-LAMP amplicons by visual inspection, agrose gel electrophoresis, and real-time monitoring using a turbidimeter were equivalently sensitive. The BKD-LAMP assay has the sensitivity of the nested PCR method, and 10 times the sensitivity of one-round PCR assay. The lower detection limit of BKD-LAMP and nested PCR is 1 pg genomic R. salmoninarum DNA, compared to 10 pg genomic R. salmoninarum DNA for one-round PCR assay. In comparison to other available diagnostic methods, the BKD-LAMP assay is rapid, simple, sensitive, specific, and cost effective with a high potential for field application.  相似文献   

14.
15.
16.
17.
Since its invention in 2000, loop-mediated isothermal amplification (LAMP) assay has been one of the most extensively used molecular diagnostic tools in bio-medical fields due to the rapidity, accuracy, and cost-effectiveness of the technique. This technique has also earned popularity in aquaculture disease diagnosis. Aquaculture, as a result of its rapid intensification and expansion, experiences increased infectious disease occurrences. For maintenance of economic viability, rapid, sensitive and efficient diagnosis of disease causing agents is an important step prior to undertaking effective prevention and control measures in aquaculture. Constraints on time and expertise required for conventional biochemical, serological and polymerase chain reaction (PCR)-based techniques offer avenues in adoption of the LAMP by the aquaculturists at field conditions. This assay has been successfully applied in detection of several bacterial, viral and parasitic pathogens causing serious diseases in aquaculture. In this review, we endeavored to accommodate the LAMP methodology with its different recent improvements and an overview of its application for the detection of aquaculture-associated pathogens.  相似文献   

18.
19.
In this study, a loop-mediated isothermal amplification (LAMP) assay was established to detect Schistosoma japonicum DNA in faecal and serum samples of rabbits, and serum samples of humans infected with S. japonicum. This LAMP assay was based on the sequence of highly repetitive retrotransposon SjR2, and was able to detect 0.08 fg S. japonicum DNA, which is 104 times more sensitive than conventional PCR. The LAMP assay was also highly specific for S. japonicum and able to detect S. japonicum DNA in rabbit sera at 1 week p.i. Following administration of praziquantel, detection of S. japonicum DNA in rabbit sera became negative at 12 weeks post-treatment. These results demonstrated that LAMP was effective for early diagnosis of, and evaluation of therapy effectiveness for, S. japonicum infection. Both PCR and LAMP assays were then used to detect S. japonicum DNA in 30 serum samples from S. japonicum-infected patients and 20 serum samples from healthy persons. The percentage sensitivity of LAMP was 96.7%, whereas that of PCR was only 60%, indicating that LAMP was more sensitive than conventional PCR for clinical diagnosis of schistosomiasis cases in endemic areas. The established LAMP assay should provide a useful and practical tool for the routine diagnosis and therapeutic evaluation of human schistosomiasis.  相似文献   

20.
Cape St. Paul Wilt Disease (CSPWD), the Ghanaian form of the lethal yellowing‐type diseases associated with phytoplasmas, is yet the major factor affecting the coconut industry in Ghana since 1932. Recently, a PCR assay based on a non‐ribosomal gene sequence was developed for the detection of the CSPWD phytoplasma in the West Region. Our study aimed at comparing the performance of the non‐ribosomal PCR to existing ribosomal PCRs and determine the best assay to use for the detection of the CSPWD phytoplasma within the three major coconut‐growing regions: Central, Western and Volta and in palms at different ages and disease stages. To determine the most affected region, 163 CSPWD‐affected coconut palms from 32 locations from the Central, Western and Volta Regions were randomly sampled. The analysis of the presence of the CSPWD phytoplasma in coconut palms of different ages showed that palms within the age brackets (1–10), (11–20) and (61–70) years were the most affected by CSPWD. The disease was most widespread in the Central, followed by the Western, then the Volta Region. A Euclidean similarity analysis of the infection rate across palm ages revealed three distinct clusters at a linkage distance of 6.5. The PCR assay based on the secA gene sequence yielded the highest number of coconut palms positive for the CSPWD phytoplasma compared to PCR assays targeting phytoplasma ribosomal genes. These results report an update on the detection of the CSPWD phytoplasma in the CSPWD‐affected coconut regions and across coconut palms representing different ages and disease stages and provide valuable information to support the CSPWD management in Ghana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号