首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switchgrass (Panicum virgatum L.) is being developed as a biofuel feedstock for the United States. Efficient and accurate methods to estimate switchgrass biomass feedstock supply within a production area will be required by biorefineries. Our main objective was to determine the effectiveness of indirect methods for estimating biomass yields and composition of switchgrass fields. Indirect measurements were conducted in eastern Nebraska from 2003 to 2007 in which switchgrass biomass yields were manipulated using three nitrogen rates (0 kg N ha-1, 60 kg N ha-1, and 120 kg N ha-1) and two harvest periods (August and post-killing frost). A modified Robel pole was used to determine visual obstruction, elongated leaf height, and canopy height measurements. Prediction models from the study showed that elongated leaf height, visual obstruction, and canopy height measurements accounted for >?91%, >?90%, and >?82% of the variation in switchgrass biomass, respectively. Regression slopes were similar by cultivar (“Cave-in-Rock” and “Trailblazer”), harvest period, and across years indicating that a single model is applicable for determining biomass feedstock supply within a region, assuming similar harvesting methods. Sample numbers required to receive the same level of precision were as follows: elongated leaf height<canopy height<visual obstruction. Twenty to 30 elongated leaf height measurements in a field could predict switchgrass biomass yield within 10% of the mean with 95% confidence. Visual obstruction is recommended on switchgrass fields with low to variable stand densities while elongated leaf height measurements would be recommended on switchgrass fields with high, uniform stand densities. Incorporating an ocular device with a Robel pole provided reasonable frequency estimates of switchgrass, broadleaf weeds, and grassy weeds at the field scale.  相似文献   

2.

Key message

Use of wood ash or a mixture of wood and oil shale ashes increases the concentrations of P and K in the assimilation organs of conifers and stimulates tree growth.

Abstract

The effect of fertilization with wood ash (10 and 15 t ha?1) and a mixture of wood ash (10 t ha?1) and oil shale ash (8 t ha?1) on the growth (height, root collar diameter, biomass, biomass production) and nutrient concentrations in subsoil and needles of young Pinus sylvestris and Picea abies plants on the Puhatu (Northeast Estonia) cutaway peatland in the first 2 years were studied. After the second growing year differences in the average height growth of P. abies and P. sylvestris were statistically significantly higher on ash-treated plots than on the control plots (p < 0.05), being respectively 1.4–1.6 and 1.5–1.7 times greater than height growth of the control trees. The best results on root collar diameter were observed on mixture ash treatments: the root collars were 1.9 (P. abies) and 2.2 (P. sylvestris) times larger than of the control trees. The biomass of the two conifer species and the biomass production of P. sylvestris in 2012 was the greatest on the mixture ash treatments. Five months after fertilization with ashes the concentrations of P, K, Ca and Mg were higher on the treated plots than on the control plot. Although the concentrations of P and K in P. sylvestris needles rose after the treatment with ash, seedlings suffered from P and K deficiency. The concentrations of P and K in P. abies needles were on optimum. The P/N and the K/N ratios in needles were also improved compared to control trees needles.  相似文献   

3.
Grassland canopy management (spring burn, mowing and residue removal in late-summer, or no management) and native tallgrass species composition (cool season mixture, warm season mixture, or combined cool and warm mixture) effects on C and N in aboveground biomass and soil were investigated at Brookings SD on a previously-plowed Barnes clay loam (fine-loamy, superactive, frigid Calcic Hapludoll). During the last 2 yr of the 9-yr experiment, shoot biomass was affected by canopy management with the burn (2,730 kg ha?1) and mow (3,421 kg ha?1) treatments containing less than no management (4,655 kg ha?1). Burn treatment biomass contained 1,189 kg ha?1 and 25 kg ha?1 of C and N, mow contained 1,433 kg ha?1 and 33 kg ha?1 of C and N, while no management contained 2,014 kg ha?1 and 39 kg ha?1 of C and N, respectively. Soil C accumulation was independent of grass species composition. Soil C accumulation rates, which increased in strong linear fashion (r 2 of 0.89 to 0.92) after initial grass establishment, were 387 kg C ha?1 yr?1, 503 kg C ha?1 yr?1, and 711 kg C ha?1 yr?1 for burn, mow, and no management treatments, respectively. Thus, grassland management methods used after conversion of cropland to grassland have important effects on grass biomass and soil C accumulation.  相似文献   

4.
The global significance of carbon storage in Indonesia’s coastal wetlands was assessed based on published and unpublished measurements of the organic carbon content of living seagrass and mangrove biomass and soil pools. For seagrasses, median above- and below-ground biomass was 0.29 and 1.13 Mg C ha?1 respectively; the median soil pool was 118.1 Mg C ha?1. Combining plant biomass and soil, median carbon storage in an Indonesian seagrass meadow is 119.5 Mg C ha?1. Extrapolated to the estimated total seagrass area of 30,000 km2, the national storage value is 368.5 Tg C. For mangroves, median above- and below-ground biomass was 159.1 and 16.7 Mg C ha?1, respectively; the median soil pool was 774.7 Mg C ha?1. The median carbon storage in an Indonesian mangrove forest is 950.5 Mg C ha?1. Extrapolated to the total estimated mangrove area of 31,894 km2, the national storage value is 3.0 Pg C, a likely underestimate if these habitats sequester carbon at soil depths >1 m and/or sequester inorganic carbon. Together, Indonesia’s seagrasses and mangroves conservatively account for 3.4 Pg C, roughly 17 % of the world’s blue carbon reservoir. Continued degradation and destruction of these wetlands has important consequences for CO2 emissions and dissolved carbon exchange with adjacent coastal waters. We estimate that roughly 29,040 Gg CO2 (eq.) is returned annually to the atmosphere–ocean pool. This amount is equivalent to about 3.2 % of Indonesia’s annual emissions associated with forest and peat land conversion. These results highlight the urgent need for blue carbon and REDD+ projects as a means to stem the decline in wetland area and to mitigate the release of a significant fraction of the world’s coastal carbon stores.  相似文献   

5.
Unger M  Homeier J  Leuschner C 《Oecologia》2012,170(1):263-274
The dependence of aboveground biomass and productivity of tropical forests on soil fertility is not fully understood, since previous studies yielded contrasting results. Here, we quantify aboveground biomass (AGB) and stem wood production, and examine the impact of soil chemistry on these parameters in mature tropical forest stands of the equatorial Andes in Ecuador. In 80 plots of 0.04 ha at four elevation levels (500, 1,000, 1,500 and 2,000 m a.s.l., total sample area = 3.2 ha), we measured ten important soil chemical parameters, inventoried all trees ≥10 cm dbh and monitored stem diameter growth with dendrometer tapes in 32 plots. Top canopy height and stem density significantly decreased from 500 to 2,000 m, while tree basal area increased and AGB remained invariant (344 ± 17 Mg DM ha?1, mean ± SE) with elevation. Wood specific gravity (WSG) showed a significant, but small, decrease. Stem wood production decreased from 4.5 to 3.2 Mg DM ha?1 year?1 along the transect, indicating a higher biomass turnover at lower elevations. The only soil variable that covaried with AGB was exchangeable K in the topsoil. WSG increased with decreases in N mineralisation rate, soil pH and extractable Ca and P concentrations. Structural equation modelling (SEM) revealed that nitrogen availability acts on stem wood production only indirectly through a negative relation between N mineralisation rate and WSG, and a positive effect of a lowered WSG on stem growth. The SEM analysis showed neither direct nor indirect effects of resin-extractable P on wood production, but a negative P influence on AGB. We conclude that nitrogen availability significantly influences productivity in these Andean forests, but both N and P are affecting wood production mainly indirectly through alterations in WSG and stem density; the growth-promoting effect of N is apparently larger than that of P.  相似文献   

6.
The effects of a range of tree densities on native herbage (mainly Aristida ramosa, Bothriochloa decipiens and Themeda australis biomass in a Eucalyptus crebra woodland near Kingaroy, Queensland, were investigated between March 1977 and July 1981. Rainfall in this area averages 750 mm year?1. Initial tree density was 640 trees ha?1 and this was manipulated using arboricide chemicals to leave plots containing 640, 320, 160, 80 and nil live trees ha?1. Fires were excluded from the whole area, and half the plots were grazed by cattle. The largest increase in herbage biomass was recorded in the ‘all trees killed’ treatment (nil trees ha?1), closely followed by the ‘scattered tree’ treatment (80 trees ha?1). The relationship between tree density and herbage biomass was linear. Recruitment of grass and forb plants, as reflected by changes in density, varied according to treatment. Increased grass recruitment was correlated with cattle grazing, whilst forb recruitment was influenced mainly by tree density.  相似文献   

7.
Variability in biomass yield among 13 varieties of Populus hybrids was examined during a 7-year rotation in a network of 4 field trials in Michigan, USA. Seventh-year yield varied by site, averaging from 15.1 Mg ha?1 in the north to 35.2 Mg ha?1 in the south. Yield varied among varieties, ranging from 3.0 Mg ha?1 for DN70 in the north to 52.9 Mg ha?1 for NM2 in the south. Yield was most strongly correlated with growing season temperatures and rainfall but less with edaphic factors throughout the network. Twenty-eight percent of the total variation in individual tree weight was due to location effects and another 28% was due to genetic factors, including strong genotype by environment interactions. Even though each 64-tree plot comprised genetically identical clones, the remaining 44% of total observed variation among trees occurred within these plots. Five varieties that performed well throughout the network were identified as an elite cohort for general commercial use throughout the region. This cohort yielded as much as 50% more biomass than random selections. Certain varieties did well at one location while not at others because of strong genotype by environment interactions. Locally chosen elite cohorts produced as much as 5% more biomass than the regional elite cohort. Varietal ranking did change over time but it was possible to reliably identify the regional cohort after 3 years and local cohorts after 4 years. Local, long-term testing of Populus hybrids will be necessary to optimize commercial biomass yields and thereby maximize financial returns to growers.  相似文献   

8.
Leaves are major components of mangrove productivity, but data on leaf dynamics are scarce. We marked the shoot tips of three species in four sites of a riverine mangrove and monitored leaf formation, senescence and abscission and flower formation. The leaf area and biomass in the mangrove were estimated using phytosociological data. Leaf size and formation were similar among the four sites. The tips of Rhizophora mangle had more leaf scars (41), more leaves present (9.7), a faster leaf formation rate (one every 26 days) and a shorter life span (8.4 months) than those of Avicennia schaueriana (10, 8.1, 48 days and 13.1 months, respectively) and Laguncularia racemosa, except for the shorter life span (15, 6.6, 31 days and 6.8 months, respectively). The proportion of tips that flowered was higher in L. racemosa (13 %) and in R. mangle (11 %) than in A. schaueriana (2 %). The largest biomass of the average R. mangle leaf (0.75 vs. 0.53 and 0.37 g leaf?1, of L. racemosa and A. schaueriana, respectively) and the highest plant density of this species (2,590 vs. 694 and 202 plant ha?1, respectively) resulted in it having the greatest leaf productivity (10.6 Mg ha?1 year?1 compared to 2.4 Mg ha?1 year?1 for L. racemosa and 0.3 Mg ha?1 year?1 for A. schaueriana). The total leaf production is higher in this mangrove than most of those reported for other mangroves in the world.  相似文献   

9.
We determine the aboveground biomass and carbon storage (ABGC) of trees and the herbaceous layer in miombo woodland in the Eastern Arc Mountains (EAM) of Tanzania. In four 1‐ha sample plots in Nyanganje and Kitonga Forests, we measured all trees ≥10 cm diameter alongside height and wood mass density. The plots contained an average of 20 tree species ha?1 (range 11–29) and 344 stems ha?1 (range 281–382) with Shannon diversity values of 1.05 and 1.25, respectively. We weighted nine previously published woody savannah allometric models based on whether: (i) the model was derived from the same geographical region; (ii) the model included tree height/wood mass density in addition to stem diameter; and (iii) sample size was used to fit the model. The weighted mean ABGC storage from the nine models range from 13.5 ± 2 to 29.8 ± 5 Mg ha?1. Measured ABGC storage in the herbaceous layer, using the wet combustion method, adds 0.55 ± 0.02 Mg C ha?1. Estimates suggest that EAM miombo woodlands store a range of 13–30 Mg ha?1 of carbon. Although the estimates suggest that miombo woodlands store significant quantities of carbon, caution is required as this is the first estimate based on in situ data.  相似文献   

10.
We compared the soil C input potential of a common catch-crop (fodder radish) established in 6-year-old direct-drilled (DD) plots with adjacent conventionally tilled (CT) plots on a Danish sandy loam soil by use of 14C-isotope labelling techniques. Intact monoliths of soil with actively growing fodder radish seedlings were extracted in Autumn of 2008 from DD and CT field plots and labelled with 14CO2 at different time intervals during fodder radish growth. Labelled monoliths were then sampled 6 and 100 days after termination of labelling by clipping above-ground biomass at soil level and separating below-ground components into macro-roots and macro-root-free soil at 0?C10, 10?C25 and 25?C45 cm soil depth. Using fodder radish 14C data and the preceding spring barley biomass yield data we estimated C input from the spring barley-fodder radish cycle in addition to evaluating the effect of the removal of spring barley harvestable straw on soil C input. Potential soil C input under straw removal scenarios with and without an established fodder radish crop was also evaluated. Relative to other depths, over 70% of labelled below-ground C was found in the 0?C10 cm soil depth in both DD and CT treatments for each of the two samplings. For both macro-root and macro-root-free soil and in both tillage treatments, labelled C decreased significantly with depth (P?<?0.05). A decline of labeled C in macro-root but an increase of labeled C in macro-root-free soil was observed from day 6 to day 100 for both tillage treatments. Over the autumn-winter growing period, total below-ground C input by fodder radish within the 0?C45 cm soil depth was approximately 1.0 and 1.2 Mg C ha?1 for CT and DD, respectively. We used data from 100 days after labelling, which coincided with the incorporation of the field fodder radish biomass, to estimate that the total fodder radish contribution to below-ground C after biomass incorporation would range between 1.6 and 1.7 Mg C ha?1 for DD and CT, respectively. The figures for spring barley straw removal with fodder radish establishment would be between 4.9 and 5.1 Mg C ha?1, while with no fodder radish establishment, C input to the soil would range between 3.2 Mg C ha?1 and 3.4 Mg C ha?1, which is approximately 0.6 Mg C ha?1 lower than the 4 Mg C ha?1 biomass C input required to maintain long-term soil organic C. In comparison, under straw retention and fodder radish catch-crop establishment the total spring barley and fodder radish C input would be approximately 6.1 and 6.5 Mg C ha?1 for DD and CT, respectively. We conclude that fodder radish catch-crops have a potential for mitigating against soil C depletion resulting from export of cereal straw to other uses.  相似文献   

11.
Wood density (WD) is believed to be a key trait in driving growth strategies of tropical forest species, and as it entails the amount of mass per volume of wood, it also tends to correlate with forest carbon stocks. Yet there is relatively little information on how interspecific variation in WD correlates with biomass dynamics at the species and population level. We determined changes in biomass in permanent plots in a logged forest in Vietnam from 2004 to 2012, a period representing the last 8 years of a 30 years logging cycle. We measured diameter at breast height (DBH) and estimated aboveground biomass (AGB) growth, mortality, and net AGB increment (the difference between AGB gains and losses through growth and mortality) per species at the individual and population (i.e. corrected for species abundance) level, and correlated these with WD. At the population level, mean net AGB increment rates were 6.47 Mg ha?1 year?1 resulting from a mean AGB growth of 8.30 Mg ha?1 year?1, AGB recruitment of 0.67 Mg ha?1 year?1 and AGB losses through mortality of 2.50 Mg ha?1 year?1. Across species there was a negative relationship between WD and mortality rate, WD and DBH growth rate, and a positive relationship between WD and tree standing biomass. Standing biomass in turn was positively related to AGB growth, and net AGB increment both at the individual and population level. Our findings support the view that high wood density species contribute more to total biomass and indirectly to biomass increment than low wood density species in tropical forests. Maintaining high wood density species thus has potential to increase biomass recovery and carbon sequestration after logging.  相似文献   

12.
Causes and implications of spatial variability in postfire tree density and understory plant cover for patterns of aboveground net primary production (ANPP) and leaf area index (LAI) were examined in ninety 11-year-old lodgepole pine (Pinus contorta var. latifolia Engelm.) stands across the landscape of Yellowstone National Park (YNP), Wyoming, USA. Field studies and aerial photography were used to address three questions: (1) What is the range and spatial pattern of lodgepole pine sapling density across the burned Yellowstone landscape and what factors best explain this variability? (2) How do ANPP and LAI vary across the landscape and is their variation explained by abiotic factors, sapling density, or both? (3) What is the predicted spatial pattern of ANPP and LAI across the burned Yellowstone landscape? Stand density spanned six orders of magnitude, ranging from zero to 535,000 saplings ha?1, and it decreased with increasing elevation and with increasing distance from unburned forest (r 2?=?0.37). Postfire densities mapped from 1:30,000 aerial photography revealed that 66% of the burned area had densities less than 5000 saplings ha?1 and approximately 25% had densities greater than 10,000 saplings ha?1; stand density varied spatially in a fine-grained mosaic. New allometric equations were developed to predict aboveground biomass, ANPP, and LAI of lodgepole pine saplings and the 25 most common herbaceous and shrub species in the burned forests. These allometrics were then used with field data on sapling size, sapling density, and percent cover of graminoid, forb, and shrub species to compute stand-level ANPP and LAI. Total ANPP averaged 2.8 Mg ha?1y?1 but ranged from 0.04 to 15.12 Mg ha?1y?1. Total LAI averaged 0.80 m2 m?2 and ranged from 0.01 to 6.87 m2 m?2. Variation in ANPP and LAI was explained by both sapling density and abiotic factors (elevation and soil class) (ANOVA, r 2?=?0.80); abiotic variables explained 51%–54% of this variation. The proportion of total ANPP contributed by herbaceous plants and shrubs declined sharply with increasing sapling density (r 2?=?0.72) and increased with elevation (r 2?=?0.36). However, total herbaceous productivity was always less than 2.7 Mg ha?1 y?1, and herbaceous productivity did not compensate for tree production when trees were sparse. When extrapolated to the landscape, 68% of the burned landscape was characterized by ANPP values less than 2.0 Mg ha?1y?1, 22% by values ranging from 2 to 4 Mg ha?1y?1, and the remaining 10% by values greater than 4 Mg ha?1y?1. The spatial patterns of ANPP and LAI were less heterogeneous than patterns of sapling density but still showed fine-grained variation in rates. For some ecosystem processes, postfire spatial heterogeneity within a successional stage may be similar in magnitude to the temporal variation observed through succession.  相似文献   

13.
Growth and death rates of aboveground plant parts were measured in a mature forest and four different-aged deciduous broadleaf forests regeneratede after clear-cutting, with special reference to rates for woody parts (stems and branches) of different diameters (ø) in rerms of the pipe model theory (Shinozaki et al., 1964). The total biomass increment of woody parts of trees higher than 1.3 m varied within a range of 2.1-4.6 ton ha?1 yr?1, the increase beingdue largely to the growth of canopy trees exposed to direct sunlight. Biomass increments of small (ø<1 cm) and medium (1≤ø<5 cm) woody parts were negligibly small except in the youngest forest, and changes in aboveground woody biomass with forest age after clear-cutting mainly resulted from accumulation of large (5 cm<ø) woody parts of canopy trees. Biomass loss of trees due to death and grazing increased with forest age from 4.0 to 8.3 ton ha?1 yr?1. Recovery of leaf and small wood falls was observed at the early stage of regeneration, while large wood falls increased during regeneration. Flower and fruit fall was markedly higher in the mature forest than in the other four forest types. Mortality of woody parts became higher with forest age and was 20, 5.0 and 0.46% yr?1 for small, medium and large parts, respectively, at the mature stage. Aboveground net production of the forest was in therange 7.6-13.3 ton ha?1 yr?1 with the undergrowth vegetation lower than 1.3 m being 0.4-1.4 ton ha?1 yr?1. Production recovered rapidly at an early stage of regeneration and was highest in mature forest.  相似文献   

14.
The objectives of this study were to examine plant biomass accumulation and carbon (C) storage in four different aged Sonneratia apetala plantations in the Leizhou Bay in South China. The allometric equations using diameter at breast height (DBH) and height (H) were developed to quantify plant biomass. The total forest biomass (TFB) of S. apetala plantation at 4, 5, 8, and 10 years old was 47.9, 71.7, 95.9, and 108.1 Mg ha?1, respectively. The forest biomass C storage in aboveground (AGB) and roots at 4, 5, 8, and 10-year plantation was 19.9, 32.6, 42.0, 49.0 Mg ha?1, respectively. Soil organic C (SOC) on the top 20 cm of sediments increased by 0.3, 6.8, 27.4, and 35.0 Mg ha?1after 4, 5, 8, and 10 years of reforestation, respectively. The average annual rate of total carbon storage (TCS) accumulation at 4, 5, 8, and 10-year S. apetala plantation was 5.0, 7.9, 8.7, and 8.4 Mg ha?1 yr?1, respectively. The TCS values in this study were underestimated because we only estimated SOC storage on the top 20-cm sediments in these plantations. This study suggests these young S. apetala plantations have the characteristics of fast growth, high biomass accumulation, and high C storage capacity, especially in sediments. They sequestrated C at a high but varying rate over time. The large-scale reforestation of S. apetala plantations in the open coastal mudflats in southern China has great potential to sequestrate more C as well as restore the degraded coastal land. The potential ecological issues associated with the increasing monoculture plantations were discussed. More long-term monitoring and research are needed to further evaluate biomass and C accumulation of S. apetala plantations over time as well as how the increasing distribution of this monoculture plantation will influence the few native mangrove remnants.  相似文献   

15.
Liana is a life form that possesses high importance in many Neotropical forests. Density of climbers apparently increases with the intervention rate (e.g. logging). The aim of this work is to characterize the structure, floristic composition and soils of a sector classified as Liana Forest (LF). We identified an LF sector in a not-logged area; three 1 ha square plots were measured (individuals ≥ 10 cm dbh, “diameter at breast height”). In each plot, we evaluate four 100 m2 square understory subplots (all spermatophyta individuals < 10 cm dbh). LF has a low canopy ( < 15 m) and is dominated by Alexa imperatricis and Pentaclethra macroloba. Basal area (20.4 m2ha? 1) and diversity (H′ = 2.6) are lower than other surrounding plots. Understory is dominated by gnarled climbers, and the most important are Cheiloclinium hippocrateoides and Bauhinia scala-simiae. Soil is extremely acidic, with very low fertility but is similar to neighboring places. We conclude that LF was neither originated by edaphic restrictions nor logging; LF probably suffered a hurricane wind that fell down most of the canopy trees, thick individuals of climber species also disappeared, and the current successional stage favors a recovery dominated with thin individuals of this life form.  相似文献   

16.
Ultramafic outcrops are widespread in Albania and host several Ni hyperaccumulators (e.g., Alyssum murale Waldst. &; Kit.). A field experiment was conducted in Pojske (Eastern Albania), a large ultramafic area in which native A. murale was cultivated. The experiment consisted in testing the phytoextraction potential of already installed natural vegetation (including A. murale) on crop fields with or without suitable fertilisation. The area was divided into six 36-m2 plots, three of which were fertilised in April 2005 with (NPK + S). The soil (Magnesic Hypereutric Vertisol) was fully described as well as the mineralogy of horizons and the localisation of Ni bearing phases (TEM-EDX and XRD). Ni availability was also characterised by Isotopic Exchange Kinetics (IEK). The flora was fully described on both fertilised and unfertilised plots and the plant composition (major and trace elements) and biomass (shoots) harvested individually were recorded. The soil had mainly two Ni-bearing phases: high-Mg smectite (1.3% Ni) and serpentine (0.7% Ni), the first one being the source of available Ni. Ni availability was extremely high according to IEK and confirmed by Ni contents in Trifolium nigriscens Viv. reaching 1,442 mg kg?1 (A new hyperaccumulator?). Total biomass yields were 6.3 t ha?1 in fertilised plots and 3.2 t ha?1 in unfertilised plots with a highly significant effect: fertilisation increased dramatically the proportion of A. murale in the plots (2.6 t ha?1 vs. 0.2 t ha?1). Ni content in the shoots of A. murale reached 9,129 mg kg?1 but metal concentration was not significantly affected by fertilisation. Phytoextracted Ni in total harvest reached 25 kg Ni ha?1 on the fertilised plots. It was significantly lower in unfertilised plots (3 kg Ni ha?1). Extensive phytomining on such sites could be promising in the Albanian context by domesticating already installed natural populations with fertilisation.  相似文献   

17.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

18.
Vast areas of forests in North‐eastern Ethiopia have been replaced by cropland, shrub land or grazing areas. Thus, information about how vegetation composition and structure varies with disturbance is fundamental to conservation of such areas. This study aimed to investigate the effects of disturbance on the population structure and regeneration potential of five dominant woody species within forest where local communities harvest wood and graze livestock. Vegetation structure and environmental variables were assessed in 50 quadrats (20 m × 20 m). In most of both disturbed and undisturbed treatments, Juniperus procera was the highest contributor to the basal area of the forest, while that of Olinia rochetiana was the lowest. Analysis of population structure showed high density at lower Diameter at Breast Height (DBH) and low density at higher DBH classes. Undisturbed forest treatments had 84% canopy cover, 22 m mean vegetation height and a density of 1320 trees of dominant species and 1024 seedlings/saplings ha?1. In disturbed habitats, canopy cover (73%), mean vegetation height (18 m) and density of dominant trees and saplings were significantly lower than in undisturbed habitats. Thus, to ensure species, survival and maintain species diversity managed use of the protected area is essential.  相似文献   

19.
Although both dry- and humid-forests have been intensively studied, their physiognomic and structural differences have not yet been well characterized. The present work seeks to identify the physiognomic and structural differences between fragments of humid- and dry-forests in the state of Pernambuco, Brazil. The humid-forest fragment was located in the municipality of São Vicente Férrer (7°37′ S × 35°28′ W) and the dry-forest fragment in the municipality of Aliança (7°38′ S × 35°14′ W). Fifty 10 × 20 m plots were delimited in each area and all individual living plants with a diameter at breast height (DBH) ≥5 cm were included. It was observed that the total density (1,390 ind ha?1) and total basal area (29.9 m2 ha?1) were greater in the humid-forest than the dry-forest (649 ind ha?1 and 18.7 m2 ha?1, respectively). Individual plants in the humid-forest tended to be taller, while those in the dry-forest had generally larger diameters. There were also differences in the most structurally important families as, for example, Clusiaceae, Moraceae, Myristicaceae, and Sapotaceae in the humid-forest and Sterculiaceae, Fabaceae, Bignoniaceae, and Moraceae in the dry-forest. Physiognomic differences were also observed in the different forest layers, as the group of species composing the canopy of the dry-forest are dominated by deciduous species, while many of the species in the understory are evergreen. In the humid-forest, both the understory and canopy are predominantly composed of evergreen species. The examination of the phytosociological parameters of average height and species richness allowed us to identify physiognomic differences between humid and dry forests in Pernambuco State. The present study demonstrated that dry forests are not simply floristic/structural subsets of humid forests, and that there is a great need to establish conservation areas to protect these important but spatially restricted forests within the Atlantic coastal domain.  相似文献   

20.

Aims

Effects of different soil amendments were investigated on methane (CH4) emission, soil quality parameters and rice productivity in irrigated paddy field of Bangladesh.

Methods

The experiment was laid out in a randomized complete block design with five treatments and three replications. The experimental treatments were urea (220 kg ha?1) + rice straw compost (2 t ha?1) as a control, urea (170 kg ha?1) + rice straw compost (2 t ha?1) + silicate fertilizer, urea (170 kg ha?1) + sesbania biomass (2 t ha?1 ) + silicate fertilizer, urea (170 kg ha?1) + azolla biomass (2 t ha?1) + cyanobacterial mixture 15 kg ha?1 silicate fertilizer, urea (170 kg ha?1) + cattle manure compost (2 t ha?1) + silicate fertilizer.

Results

The average of two growing seasons CH4 flux 132 kg ha?1 was recorded from the conventional urea (220 kg ha?1) with rice straw compost incorporated field plot followed by 126.7 (4 % reduction), 130.7 (1.5 % reduction), 116 (12 % reduction) and 126 (5 % reduction) kg CH4 flux ha?1 respectively, with rice straw compost, sesbania biomass, azolla anabaena and cattle manure compost in combination urea and silicate fertilizer applied plots. Rice grain yield was increased by 15 % and 10 % over the control (4.95 Mg ha?1) with silicate plus composted cattle manure and silicate plus azolla anabaena, respectively. Soil quality parameters such as soil organic carbon, total nitrogen, microbial biomass carbon, soil redox status and cations exchange capacity were improved with the added organic materials and azolla biofertilizer amendments with silicate slag and optimum urea application (170 kg ha?1) in paddy field.

Conclusion

Integrated application of silicate fertilizer, well composted organic manures and azolla biofertilizer could be an effective strategy to minimize the use of conventional urea fertilizer, reducing CH4 emissions, improving soil quality parameters and increasing rice productivity in subtropical countries like Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号