首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
森林土壤物理性质的空间异质性研究   总被引:110,自引:5,他引:110  
王政权  王庆成 《生态学报》2000,20(6):945-950
土壤空间质性是土壤的重要属性之一。采用地统计的理论和方法,研究了阔叶红松林上层土壤物理因子的空间异质性。变异函数分析结果表明,土壤水分、容重、毛管持水量和孔隙讴具有明显的空间异质性。在0~10cm土层深,空间异质性尺度为11~13m,11~20cm土层深为6~8m,空间异质性程度随尺度变化。自相关部分的空间异质性在0~10cm和11~20cm土层深为52.9%~73.7%和69.3%~93.6%,  相似文献   

3.
Recent global warming and other anthropogenic changes have caused well‐documented range shifts and population declines in many species over a large spatial extent. Most large‐scale studies focus on birds, large mammals, and threatened species, whereas large‐scale population trends of small to medium‐sized mammals and species that are currently of least concern remain poorly studied. Large‐scale studies are needed because on a smaller scale, important patterns may be masked by local variation and stochastic processes. Here, we utilized snow track census data from Finland and NW Russia to estimate population growth rates of the Eurasian red squirrel Sciurus vulgaris for a period of 17 yr in an area of over 1 000 000 km2. We also studied the effects of changes in summer and winter temperatures, winter precipitation, predator abundance, and canopy cover on estimated red squirrel population growth rates. Our results suggest that red squirrel populations have declined in most parts of the study area, the only remarkable exception being SW Russia. These results are in concordance with previous studies suggesting that species that are still common and of least concern may be declining. However, our findings are in contrast to the common pattern of northern populations of boreal species increasing due to global warming. The estimated population growth rates are in synchrony over vast areas, suggesting that the underlying reasons also operate on a large scale. We indeed find that the population growth rate was lower in regions where winters warmed faster during the study period, suggesting that changes in the environment (or biotic changes associated with it) are linked with the decline of red squirrels.  相似文献   

4.
Question: How do N fertilization and disturbance affect the understorey vegetation, microbial properties and soil nutrient concentration in boreal forests? Location: Kuusamo (66°22′N; 29°18′E) and Oulu (65°02′N; 25°47′E) in northern Finland. Methods: We conducted a fully factorial experiment with three factors: site (two levels), N fertilization (four levels) and disturbance (two levels). We measured treatment effects on understorey biomass, vegetation structure, and plant, soil and microbial N and C concentrations. Results: The understorey biomass was not affected by fertilization either in the control or in the disturbance treatment. Fertilization reduced the biomass of deciduous Vaccinium myrtillus. Disturbance had a negative effect on the biomass of V. myrtillus and evergreen Vaccinium vitis‐idaea and decreased the relative proportion of evergreen species. Fertilization and disturbance increased the biomass of grass Deschampsia flexuosa and the relative proportion of graminoids. The amount of NH4+ increased in soil after fertilization, and microbial C decreased after disturbance. Conclusions: Our results suggest that the growth of slow‐growing Vaccinium species and soil microbes in boreal forests are not limited by N availability. However, significant changes in the proportion of dwarf shrubs to graminoids and a decrease in the biomass of V. myrtillus demonstrate the susceptibility of understorey vegetation to N enrichment. N enrichment and disturbance seem to have similar effects on understorey vegetation. Consequently, increasing N does not affect the rate or the direction of recovery after disturbance. Moreover, our study demonstrates the importance of understorey vegetation as a C source for soil microbes in boreal forests.  相似文献   

5.
Dominant canopy tree species have strong effects on the composition and function of understory species, particularly bryophytes. In boreal forests, bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and an important process regulating ecosystem productivity. We investigated how feather moss-associated N2-fixation rates and contribution to N budgets vary in time and space among coniferous and broadleaf deciduous forests. We measured N2-fixation rates using stable isotope (15N2) labeling in two moss species (Pleurozium schreberi and Hylocomium splendens) in broadleaf deciduous (Alaska paper birch—Betula neoalaskana) and coniferous (black spruce—Picea mariana) stands near Fairbanks, interior Alaska, from 2013 to 2015. N2-fixation rates showed substantial inter-annual variation among the 3 years. High N2-fixation was more strongly associated with high precipitation than air temperature or light availability. Overall, contribution of N2-fixation to N budgets was greater in spruce than in birch stands. Our results enhance the knowledge of the processes that drive N2-fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.  相似文献   

6.
Kreyling J  Haei M  Laudon H 《Oecologia》2012,168(2):577-587
Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature −5.5 vs. −2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (−82%) and the most abundant mosses Pleurozium schreberi (−74%) and Dicranum scoparium (−60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (−50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.  相似文献   

7.
8.
9.
10.
11.
Questions : How do gap abundance and the spatial pattern of trees and snags change throughout stand development in Picea mariana forests? Does spatial pattern differ among site types and structural components of a forest? Location : Boreal forests dominated by Picea mariana, northern Quebec and Ontario, Canada. Methods : Data on the abundance, characteristics and spatial location of trees, snags and gaps were collected along 200 m transects at 91 sites along a chronosequence. Spatial analyses included 3TLQV, NLV and autocorrelation analysis. Non‐parametric analyses were used to analyse trends with time and differences among structural components and site types. Results : Gaps became more abundant, numerous and more evenly distributed with time. At distances of 1–4 m, tree cover, sapling density and snag density became more heterogeneous with time. Tree cover appeared to be more uniform for the 10–33 m interval, although this was not significant. Patch size and variance at 1 m were greater for overstorey than for understorey tree cover. Snags were less spatially variable than trees at 1 m, but more so at intermediate distances (4–8 m). Few significant differences were found among site types. Conclusions : During stand development in P. mariana forest, gaps formed by tree mortality are filled in slowly due to poor regeneration and growth, leading to greater gap abundance and clumping of trees and snags at fine scales. At broader scales, patchy regeneration is followed by homogenization of forest stands as trees become smaller with low productivity due to paludification.  相似文献   

12.
Statistical techniques for analyzing data in the agricultural sciences have traditionally followed the pioneering efforts of R.A. Fisher who assumed that observations in the field were independent and identically distributed. Such techniques, proven useful in the past and still being used today for comparing the merits of different management practices or different treatments, are presently giving way to additional methods that are based upon observations being spatially or temporally correlated. It is physically more sensible to expect soil attributes to be correlated when they are measured at adjacent points in space or time. Spatially repetitious patterns of soil attributes for physical and biological processes occurring at distances of a few molecules to those of kilometers are also expected. Opportunities to use geostatistics, time series analyses, state-space models, spectral analyses of variance, lagged regression models and other alternative techniques for analyzing multidimensional random fields are available to enhance the understanding of agro-ecosystems. Approaches to modeling and fitting data using stochastic partial differential equations and scaling techniques also help reveal the underlying processes occurring in field soils. Inclusion of these alternatives in the development of an agro-ecological technology leads to improved sampling designs to better entire management units, rather than ascertaining the impact of particular, sometimes arbitrary treatments applied to a set of small plots using analysis of variance methods.  相似文献   

13.
14.
15.
Compared to freshwater and the open ocean, less is known about bacterioplankton community structure and spatiotemporal dynamics in estuaries, particularly those with long residence times. The Chesapeake Bay is the largest estuary in the United States, but despite its ecological and economic significance, little is known about its microbial community composition. A rapid screening approach, ITS (internal transcribed spacer)-LH (length heterogeneity)-PCR, was used to screen six rRNA operon (16S rRNA-ITS-23S rRNA) clone libraries constructed from bacterioplankton collected in three distinct regions of the Chesapeake Bay over two seasons. The natural length variation of the 16S-23S rRNA gene ITS region, as well as the presence and location of tRNA-alanine coding regions within the ITS, was determined for 576 clones. Clones representing unique ITS-LH-PCR sizes were sequenced and identified. Dramatic shifts in bacterial composition (changes within subgroups or clades) were observed for the Alphaproteobacteria (Roseobacter clade, SAR11), Cyanobacteria (Synechococcus), and Actinobacteria, suggesting strong seasonal variation within these taxonomic groups. Despite large gradients in salinity and phytoplankton parameters, a remarkably homogeneous bacterioplankton community was observed in the bay in each season. Stronger seasonal, rather than spatial, variation of the bacterioplankton population was also supported by denaturing gradient gel electrophoresis and LH-PCR analyses, indicating that environmental parameters with stronger seasonal, rather than regional, dynamics, such as temperature, might determine bacterioplankton community composition in the Chesapeake Bay.  相似文献   

16.
It has been suggested that an abundance of alternate food early in the spring may be critical to the ability of generalist predaceous mites to suppress spider mite pests. One alternate food that is typically very abundant in spring is wind-dispersed pollen. Here we investigate, at several spatial scales, the heterogeneity in the availability of pollen to predaceous mites on apple. We found pollen to be abundant on apple leaves very soon after they opened (>100 grains/cm 2 ), and that the dominant pollen types at this time were wind-dispersed tree pollens (Betulaceae and Pinaceae). We found that most of the spatial variation in pollen abundance occurred at either small spatial scales (within trees) or very large spatial scales (among orchard blocks). Variability among orchards was clearly influenced by the surrounding vegetation, and probably also by the management regime (frequency of mowing). Spatial heterogeneity in pollen availability may affect the build-up of predatory mite populations in the spring, as we found early season abundances of Typhlodromus pyri (Phytoseiidae) and Zetzellia mali (Stigmaeidae) to be better correlated with early season pollen density than with abundance of mite prey (Aculus schlechtendali).  相似文献   

17.
We examined inter-specific interactions among goshawks (Accipiter gentilis), common buzzards (Buteo buteo) and honey buzzards (Pernis apivorus) in western Finland in 1983–1996. Because goshawks are among the largest birds of prey species in boreal forests they may take over the nest of smaller and less-competitive forest-dwelling raptors when searching for suitable places for breeding. Accordingly, more than half of newly established goshawk territories were found on the territories previously occupied by the common buzzard and the honey buzzard. Otherwise, territory sharing between these species was rare. Fledgling production of honey buzzards was not associated with the presence of goshawks, probably owing to the almost 2 months later onset of breeding. This probably decreases competitive interactions between these two species. An intensive interference competition, instead, seemed to be evident between common buzzards and goshawks, because the fledgling production of common buzzards was decreased by 20% as a result of failures during incubation and nestling period in the vicinity (<1 km) of occupied goshawk nests. Similarly, territory occupancy of common buzzards till the next breeding season was significantly reduced in the presence of goshawks. Relatively high proportions of occupied buzzard territories (17%) in the study area were shared by breeding goshawks on the same territory. This suggests that although their diets are dissimilar they inhabit similar habitats and might compete for the available prime nesting habitats within forest landscapes. In addition, goshawks benefit from taking over the complete nests of other raptors, imposing upon the original owners of the nest, because building a large stick nest is probably energetically costly. As a large raptor, the goshawk apparently has a competitive advantage over smaller ones, and may have an ever-increasing impact on smaller birds of prey, if there is a lack of sheltered forests inducing competition for the available nest sites.  相似文献   

18.
Exploring potential biodiversity indicators in boreal forests   总被引:11,自引:0,他引:11  
The present study evaluates indicators in Swedish spruce forests. We ask whether different species groups co-vary in their occurrence and to what extent species richness and composition is predictable from habitat structures. We studied 10 boreal spruce forest stands constituting a gradient in degree of selective logging. Occurrences of vascular plants, bryophytes, epiphytic lichens and wood-inhabiting fungi as well as habitat structures was inventoried. In addition, in five of the stands, beetles were sampled with windows traps. Total species richness was correlated with several habitat factors, mainly particular substrates and degree of forestry impact. However, the richness of a set of species regularly used as indicators did not correlate with habitat factors. Correlation in species richness among different organism groups were few and scale dependent. Only lichens and vascular plants formed nested subset patterns (i.e. species composition at poorer sites is subsets of the species present at richer sites) among the study sites. The study shows that in this forest type one cannot a priori assume that richness in one group of species correlated with richness in other, and measures of single habitat features may be relevant only to particular groups of species. Instead, monitoring and inventories should be based on a set of factors reflecting important aspects for different groups of organisms and if indicator species are to be used these should be chosen from several species groups.  相似文献   

19.
Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010–2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no‐harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710–6742 Mt C. For the no‐harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long‐term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.  相似文献   

20.
Heterogeneity in species assemblages of forest-floor arthropods — carabid beetles, ants and spiders — within and between different forest age classes was studied in the southern Finnish taiga. The importance of processes operating on the local scale (within the movement radius of the species) vs on the regional scale (among forest stands) in determining the observed variation was assessed. Four data sets with different spatial resolutions in mesic forests in the same general study area were used. The material consists of 18 283 carabids of 51 species, 48 769 spiders of 212 species, and 126 718 worker ants of 23 species. Analyses of abundance variation and species complementarity among successional stages revealed that in all the three taxa species occurring in the mature forest were prevalent in the younger successional stages as well, constituting more than half of the catch in any age class. A great majority of carabid and spider species were widely distributed across the forest age classes, whereas ants include a higher proportion of species with a narrower amplitude across the succession gradient. Comparisons of similarity between samples at increasing distance from one another on the local scale within forest stands (a few tens of meters to a few hundreds of meters) showed a quite consistent pattern in carabids and spiders: there was more variation between sampling sites in young successional forests than in the mature forest. Furthermore, only in the mature forest a slight, albeit statistically not significant, negative relationship between similarity of samples and distance between sampling sites was detected. In carabids and spiders, comparisons between samples located at a distance of 10–15 m from each other showed considerable heterogeneity, the mean percentage similarity being c. 0.6 (in ants c. 0.8). On the regional scale, systematic variation between young and mature forest stands is a major element increasing the total diversity (species turnover c. 50% in carabids and spiders; compositional similarity c. 0.3–0.4 in carabids, 0.2–0.3 in spiders), but variation within forest stands on a spatial scale of 10–15 meters is another important component in the total heterogeneity. The results suggest that regional abundance variation is a primary factor influencing the composition of local assemblages; a set of hypotheses elaborating this conclusion is formulated. The result implies that maintenance of habitat heterogeneity on a small scale (10–15 m) is needed to preserve biodiversity in managed forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号