首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-valine is an essential branched-amino acid that is widely used in multiple areas such as pharmaceuticals and special dietary products and its use is increasing. As the world market for l-valine grows rapidly, there is an increasing interest to develop an efficient l-valine-producing strain. In this study, a simple, sensitive, efficient, and consistent screening procedure termed 96 well plate-PC-HPLC (96-PH) was developed for the rapid identification of high-yield l-valine strains to replace the traditional l-valine assay. l-valine production by Brevibacterium flavum MDV1 was increased by genome shuffling. The starting strains were obtained using ultraviolet (UV) irradiation and binary ethylenimine treatment followed by preparation of protoplasts, UV irradiation inactivation, multi-cell fusion, and fusion of the inactivated protoplasts to produce positive colonies. After two rounds of genome shuffling and the 96-PH method, six l-valine high-yielding mutants were selected. One genetically stable mutant (MDVR2-21) showed an l-valine yield of 30.1 g/L during shake flask fermentation, 6.8-fold higher than that of MDV1. Under fed-batch conditions in a 30 L automated fermentor, MDVR2-21 accumulated 70.1 g/L of l-valine (0.598 mol l-valine per mole of glucose; 38.9% glucose conversion rate). During large-scale fermentation using a 120 m3 fermentor, this strain produced?>?66.8 g/L l-valine (36.5% glucose conversion rate), reflecting a very productive and stable industrial enrichment fermentation effect. Genome shuffling is an efficient technique to improve production of l-valine by B. flavum MDV1. Screening using 96-PH is very economical, rapid, efficient, and well-suited for high-throughput screening.  相似文献   

2.
d-lactic acid is a versatile and important industrial chemical that can be applied in the synthesis of thermal-resistant poly-lactic acid. Biosynthesis of d-lactic acid can be achieved by a variety of microorganisms, including lactic acid bacteria, yeast, and fungi; however, the final product yield, optical purity, and the utilization of both glucose and xylose are restricted. Consequently, engineered microbial systems are essential to attain high titer, productivity, and complete utilization of sugars. Herein, we critically evaluate the promising wild-type microorganisms, as well as genetically modified microorganisms to produce enantiomerically pure d-lactic acid, particularly from renewable lignocellulosic biomass. In addition, innovative bioreactor operation, metabolic flux analysis, and recent genetic engineering methods for targeted microbial d-lactic acid synthesis will be discussed.  相似文献   

3.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

4.
A series of stereoisomeric prodrugs have been designed to examine efficacy in generating higher corneal absorption relative to prednisolone. Prodrugs have been studied and identified with LC/MS/MS and NMR analyses. Prodrugs have been characterized for aqueous solubility, buffer stability, and cytotoxicity. Cellular uptake and permeability studies have been conducted across MDCK-MDR1 cells to determine prodrug affinity towards P-glycoprotein (P-gp) and peptide transporters. Enzyme-mediated degradation of prodrugs has been determined using Statens Seruminstitut rabbit cornea (SIRC) cell homogenates. Prodrugs exhibited higher aqueous solubility relative to prednisolone. Prodrugs circumvented P-gp-mediated cellular efflux and were recognized by peptide transporters. Prodrugs (DP, DDP) produced with d-isomers (d-valine) were significantly stable against both chemical and enzymatic hydrolyses. The order of degradation rate constants observed in chemical and enzymatic hydrolyses were in the same order, i.e., l-valine-l-valine-prednisolone (LLP)?>?l-valine-d-valine-prednisolone (LDP)?>?d-valine-l-valine-prednisolone (DLP)?>?d-valine-d-valine-prednisolone (DDP). Results obtained from this study clearly suggest that stereoisomeric prodrug approach is an effective strategy to overcome P-gp-mediated efflux and improve transcorneal permeability of prednisolone following topical administration.  相似文献   

5.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

6.
Bioconversion of dl-2-amino-Δ2-thiazoline-4-carboxylic acid (dl-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of l-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated l-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve l-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of dl-ATC for the in situ removal of l-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for l-cysteine and low adsorption for dl-ATC, which is a favorable option. With in situ addition of 60 g L?1 resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L?1 of dl-ATC was converted to l-cysteine with 90.4 % of yield and 28.6 mmol L?1 h?1 of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of l-cysteine was improved by 2.27-fold using ISPR method.  相似文献   

7.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

8.
d-Stereospecific amidohydrolase (DAH) from Streptomyces sp. 82F2 has potential utility for the synthesis of d/l configuration dipeptides by an aminolysis reaction. Structural comparison of DAH with substrate-bound d-amino acid amidase revealed that three residues located in the active site pocket of DAH (Thr145, Ala267, and Gly271) might be involved in interactions with d-phenylalanine substrate. We substituted Ala267 and Gly271, which are located at the bottom of the hydrophobic pocket of DAH, with Phe and observed changes in the stereoselectivity and specific activity toward the free and acetylated forms of d/l-Phe-methyl esters. In contrast, the mutation of Thr145, which likely supplies negative charge for recognition of the amino group of the substrate, hardly affected the stereoselectivity of the enzyme. A similar effect was observed in an investigation of hydrolysis and aminolysis reactions using the acetylated forms of d/l-Phe-methyl esters and 1,8-diaminooctane as an acyl-donor and acyl-acceptor, respectively. Substrate binding by DAH was disrupted by the mutation of Ala267 to Val or Trp and kinetic analysis showed that the hydrophobicity of the bottom of the active site pocket (Ala267 and Gly271) is important for both stereoselectivity and recognition of hydrophobic substrates.  相似文献   

9.
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, d-lactate has attracted much attention. To improve d-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest d-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of d-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC–MS and LC–MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with d-lactate production. Moreover, a quantitative iTRAQ–LC–MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on d-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved d-lactate production. These findings provide the first omics view of cell growth and d-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of d-lactate.  相似文献   

10.
d-Sorbitol-6-phosphate 2-dehydrogenase (S6PDH, E.C. 1.1.1.140) catalyzes the NADH-dependent conversion of d-fructose 6-phosphate (F6P) to d-sorbitol 6-phosphate (S6P). In this work, recombination and characterization of Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase are reported. Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase was expressed in P. pastoris and Arabidopsis thaliana. Enzyme assay indicated that HmS6PDH catalyzes the reduction of d-fructose 6-phosphate to d-sorbitol 6-phosphate and HmS6PDH activity was enhanced by NaCl. Furthermore, transgenic A. thaliana ectopic expressing HmS6PDH accumulate more sorbitol under salt stress. These results suggest that the ectopic expression of HmS6PDH in plants can facilitate future studies regarding the engineering and breeding of salt-tolerant crops.  相似文献   

11.
A bacterium that stereospecifically produces l-valine from 5-isopropylhydantoin was isolated + from soil. It was identified as Bacillus brevis and given the number AJ-12299. l-Valine productivity from l-, d- or dl-5-isopropylhydantoin by B. brevis AJ-12299 was rather low because this bacterium had l-valine degrading-activity. In contrast, the productivity was improved by a mutant the l-valine degradation pathway of which was genetically blocked, and the 5-isopropylhydantoin consumed was stoichiometrically converted to l-valine. The optimal temperature and pH of the reaction were 30°C and 7.0~7.5. The enzyme involved in the reaction was inducible and was strongly induced by the addition of 5-isopropylhydantoin. In addition to l-valine production, this bacterium also produced various aliphatic and aromatic l-amino acids from the corresponding 5-substituted hydantoins.  相似文献   

12.
The direct fermentative production of l-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low l-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing l-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both l-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products l-alanine and l-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards l-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as l-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the l-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of l-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of l-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve l-serine productivity.  相似文献   

13.
To establish an advantageous method for the production of l-amino acids, microbial isomerization of d- and dl-amino acids to l-amino acids was studied. Screening experiments on a number of microorganisms showed that cell suspensions of Pseudomonas fluorescens and P. miyamizu were capable of isomerizing d- and dl-phenylalanines to l-phenylalanine. Various conditions suitable for isomerization by these organisms were investigated. Cells grown in a medium containing d-phenylalanine showed highest isomerization activity, and almost completely converted d- or dl-phenylalanine into l-phenylalanine within 24 to 48 hr of incubation. Enzymatic studies on this isomerizing system suggested that the isomerization of d- or dl-phenylalanine is not catalyzed by a single enzyme, “amino acid isomerase,” but the conversion proceeds by a two step system as follows: d-pheylalanine is oxidized to phenylpyruvic acid by d-amino acid oxidase, and the acid is converted to l-phenylalanine by transamination or reductive amination.  相似文献   

14.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key catalyst of CO2 fixation in nature. RuBisCO forms I, II, and III catalyze CO2 fixation reactions, whereas form IV, also called the RuBisCO-like protein (RLP), is known to have no carboxylase or oxygenase activities. Here, we describe an RLP in Ochrobactrum anthropi ATCC 49188 (Oant_3067; HamA) that functions as an oxygenase in the metabolism of d-hamamelose, a branched-chain hexose found in most higher plants. The d-hamamelose pathway is comprised of five previously unknown enzymes: d-hamamelose dehydrogenase, d-hamamelono-lactonase, d-hamamelonate kinase, d-hamamelonate-2′,5-bisphosphate dehydrogenase (decarboxylating), and the RLP 3-keto-d-ribitol-1,5-bisphosphate (KRBP) oxygenase, which converts KRBP to 3-d-phosphoglycerate and phosphoglycolate. HamA represents the first RLP catalyzing the O2-dependent oxidative C–C bond cleavage reaction, and our findings may provide insights into its applications in oxidative cleavage of organic molecules.  相似文献   

15.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

16.
Quinto G 《Applied microbiology》1966,14(6):1022-1026
Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins.  相似文献   

17.
Following the procedure of Schramm for the synthesis of polynucleotides and polysaccharides, homopolymers ofdl-leucine,dl-phenylalanine,dl-serine, anddl-valine have been prepared in yields of 13 to 57 % through the mediation of a polymetaphosphate ester. Copolymers of the amino acids also have been prepared in lower yields (4–5 %). Infrared spectra show that the polymers are not diketopiperazines and that the polymers ofdl-leucine,dl-phenylalanine, anddl-valine are polypeptides. Conversions of as much as 57% and degrees of polymerization of approximately 12 were obtained for polyleucine. Small peptides containing possibly 2 to 3 leucine residues were detected and isolated as possible intermediates in the leucine polymerization reaction. For the polymerization ofdl-valine, a temperature of 60°C, a reaction time of 10–24 h, and a ratio of polymetaphosphate ester to amino acid of 3:1 appeared to give the best results. The Schramm procedure was initially suggested as a chemical evolution model for the formation of biological polymers under prebiotic conditions. Although the significance of this reaction to prebiological organic chemistry may be questioned, it still offers a mechanistic model for the study of the synthetic reactions involving polyphosphates which are indirectly relevant to abiotic molecular evolution and the problem of the origin of life.  相似文献   

18.
This article presents changes in concentrations of d-pinitol (and other cyclitols as well as low molecular weight carbohydrates) in vegetative and reproductive organs of fenugreek (Trigonella foenumgraecum L.) during an entire plant growing period. d-Pinitol was the major cyclitol in all tested organs, representing 43–94% of total cyclitols and 2–77% of total soluble carbohydrates. The highest concentration of d-pinitol was found in pods (14–23 mg g?1 of dry weight, DW), lower in leaves and stems (5–20 and 9–10 mg g?1 DW, respectively), and the lowest in maturing seeds (2–5 mg g?1 DW). Although maturing seeds accumulate α-d-galactosides of d-pinitol (galactosyl pinitols, up to 6.6 mg g?1 DW), the major storage sugars were raffinose family oligosaccharides (RFOs, 65.37 mg g?1 DW). Both RFOs and galactosyl pinitols are hydrolyzed during seed germination, releasing sucrose and d-pinitol, respectively. Accumulation of free galactose was not detected. Owing to the high concentration of d-pinitol (up to 23.70 mg g?1 DW) and low concentration of soluble sugars, developing pods seem to be the best source of d-pinitol.  相似文献   

19.

Objectives

To optimize the production of active inclusion bodies (IBs) containing human d-amino acid oxidase (hDAAO) in Escherichia coli.

Results

The optimized initial codon region combined with the coexpressed rare tRNAs, fusion of each of the N-terminal partners including cellulose-binding module, thioredoxin, glutathione S-transferase and expressivity tag, deletion of the incorporated linker, and improvement of tRNA abundance affected the production and activity for oxidizing d-alanine of the hDAAO in IBs. Compared with the optimized fusion constructs and expression host, IBs yields and activity were increased to 2.6- and 2.8-fold respectively by changing the N-terminal codon bias of the hDAAO. The insoluble hDAAO codon variant displayed the same substrate specificity as the soluble one for oxidizing d-alanine, d-serine and d-aspartic acid. The freshly prepared hDAAO codon variant was used for analyzing the l-serine racemization activity of the bacterially expressed maize serine racemase.

Conclusions

Optimization of the N-terminal codon bias combined with the coexpression of rare tRNAs is a novel and efficient approach to produce active IBs of the hDAAO.
  相似文献   

20.
Ribose-5-phosphate isomerase (Rpi) catalyzes the conversion of d-ribose 5-phosphate (R5P) to d-ribulose 5-phosphate, which is an important step in the non-oxidative pathway of the pentose phosphate pathway and the Calvin cycle of photosynthesis. Recently, Rpis have been used to produce valuable rare sugars for industrial purposes. Of the Rpis, d-ribose-5-phosphate isomerase B from Clostridium thermocellum (CtRpi) has the fastest reactions kinetics. While Thermotoga maritime Rpi (TmRpi) has the same substrate specificity as CtRpi, the overall activity of CtRpi is approximately 200-fold higher than that of TmRpi. To understand the structural basis of these kinetic differences, we determined the crystal structures, at 2.1-Å resolution or higher, of CtRpi alone and bound to its substrates, R5P, d-ribose, and d-allose. Structural comparisons of CtRpi and TmRpi showed overall conservation of their structures with two notable differences. First, the volume of the CtRpi substrate binding pocket (SBP) was 20% less than that of the TmRpi SBP. Second, the residues next to the sugar-ring opening catalytic residue (His98) were different. We switched the key residues, involved in SBP shaping or catalysis, between CtRpi and TmRpi by site-directed mutagenesis, and studied the enzyme kinetics of the mutants. We found that tight interactions between the two monomers, narrow SBP width, and the residues near the catalytic residue are all critical for the fast enzyme kinetics of CtRpi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号