共查询到20条相似文献,搜索用时 40 毫秒
1.
This study examined the potential of producing an edible fungus, Rhizopus microsporus var. oligosporus, on biodiesel-derived crude glycerol. Prolific fungal growth was observed with a fungal biomass yield of 0.83 ± 0.02 (g biomass increase/g initial biomass) under optimal cultivation conditions (e.g. nonsterile crude glycerol at a concentration of 75% (w/v) with nutrient supplementation and without pH control). The potential of utilizing front-end processed banagrass (Pennisetum purpureum) juice as a source of nutrients for crude glycerol fermentation was evaluated with a 2.3-fold improvement in the fungal biomass yield. The glycerol-derived fungal biomass showed high amounts of threonine, one of the main limiting amino acids in non-ruminant feeds. An inexpensive fungal protein has the potential to reduce meat product prices by lowering the production costs of animal feeds. The application of fungal technology thus provides a unique sustainable option for biodiesel refineries by providing an additional source of revenue from fungal products. 相似文献
2.
Steam-exploded aspenwood chips were acid hydrolysed to their component sugars. Near theoretical solvent yields were achieved in both the acetone-butanol-ethanol (ABE) fermentation and 2,3-butanediol fermentation of these liberated sugars. When Clostridium acetobutylicum was grown on wood hydrolysates, final butanol yields of 9.0 g/L (0.26 g of butanol per g of sugar consumed) were obtained. When Klebsiella pneumoniae was grown on the wood hydrolysates, final butanediol concentrations exceeded 20 g/L, resulting in a bioconversion efficiency approaching 0.5 g of butanediol per g of sugar utilised. 相似文献
3.
4.
Butanol has been acknowledged as an advanced biofuel, but its production through acetone–butanol–ethanol (ABE) fermentation by clostridia is still not economically competitive, due to low butanol yield and titer. In this article, update progress in butanol production is reviewed. Low price and sustainable feedstocks such as lignocellulosic residues and dedicated energy crops are needed for butanol production at large scale to save feedstock cost, but processes are more complicated, compared to those established for ABE fermentation from sugar- and starch-based feedstocks. While rational designs targeting individual genes, enzymes or pathways are effective for improving butanol yield, global and systems strategies are more reasonable for engineering strains with stress tolerance controlled by multigenes. Compared to solvent-producing clostridia, engineering heterologous species such as Escherichia coli and Saccharomyces cerevisiae with butanol pathway might be a solution for eliminating the formation of major byproducts acetone and ethanol so that butanol yield can be improved significantly. Although batch fermentation has been practiced for butanol production in industry, continuous operation is more productive for large scale production of butanol as a biofuel, but a single chemostat bioreactor cannot achieve this goal for the biphasic ABE fermentation, and tanks-in-series systems should be optimized for alternative feedstocks and new strains. Moreover, energy saving is limited for the distillation system, even total solvents in the fermentation broth are increased significantly, since solvents are distilled to ~ 40% by the beer stripper, and more than 95% water is removed with the stillage without phase change, even with conventional distillation systems, needless to say that advanced chemical engineering technologies can distil solvents up to ~ 90% with the beer stripper, and the multistage pressure columns can well balance energy consumption for solvent fraction. Indeed, an increase in butanol titer with ABE fermentation can significantly save energy consumption for medium sterilization and stillage treatment, since concentrated medium can be used, and consequently total mass flow with production systems can be reduced. As for various in situ butanol removal technologies, their energy efficiency, capital investment and contamination risk to the fermentation process need to be evaluated carefully. 相似文献
5.
Oxygenated fuel additives can be produced by acetylation of glycerol. A 91% glycerol conversion with a selectivity of 38%, 28% and 34% for mono-, di- and triacetyl glyceride, respectively, was achieved at 120 °C and 3 h of reaction time in the presence of a catalyst derived from activated carbon (AC) treated with sulfuric acid at 85 °C for 4h to introduce acidic functionalities to its surface. The unique catalytic activity of the catalyst, AC-SA5, was attributed to the presence of sulfur containing functional groups on the AC surface, which enhanced the surface interaction between the glycerol molecule and acyl group of the acetic acid. The catalyst was reused in up to four consecutive batch runs and no significant decline of its initial activity was observed. The conversion and selectivity variation during the acetylation is attributed to the reaction time, reaction temperature, catalyst loading and glycerol to acetic acid molar ratio. 相似文献
6.
Binlin Dou Valerie Dupont Paul T. Williams Haisheng Chen Yulong Ding 《Bioresource technology》2009,100(9):2613-2620
The pyrolysis of the crude glycerol from a biodiesel production plant was investigated by thermogravimetry coupled with Fourier transform infrared spectroscopy. The main gaseous products are discussed, and the thermogravimetric kinetics derived. There were four distinct phases in the pyrolysis process of the crude glycerol. The presence of water and methanol in the crude glycerol and responsible for the first decomposition phase, were shown to catalyse glycerol decomposition (second phase). Unlike the pure compound, crude glycerol decomposition below 500 K leaves behind a large mass fraction of pyrolysis residues (ca. 15%), which eventually partially eliminate in two phases upon reaching significantly higher temperatures (700 and 970 K, respectively). An improved iterative Coats–Redfern method was used to evaluate non-isothermal kinetic parameters in each phase. The latter were then utilised to model the decomposition behaviour in non-isothermal conditions. The power law model (first order) predicted accurately the main (second) and third phases in the pyrolysis of the crude glycerol. Differences of 10–30 kJ/mol in activation energies between crude and pure glycerol in their main decomposition phase corroborated the catalytic effect of water and methanol in the crude pyrolysis. The 3-D diffusion model more accurately reproduced the fourth (last) phase, whereas the short initial decomposition phase was poorly simulated despite correlation coefficients ca. 0.95–0.96. The kinetics of the 3rd and 4th decomposition phases, attributed to fatty acid methyl esters cracking and pyrolysis tarry residues, were sensitive to the heating rate. 相似文献
7.
Solventogenic clostridia are well-known since almost a century due to their unique capability to biosynthesize the solvents acetone and butanol. Based on recently developed genetic engineering tools, a targeted 3-hydroxybutyryl-CoA dehydrogenase (Hbd)-negative mutant of Clostridium acetobutylicum was generated. Interestingly, the entire butyrate/butanol (C4) metabolic pathway of C. acetobutylicum could be inactivated without a severe growth limitation and indicated the general feasibility to manipulate the central fermentative metabolism for product pattern alteration. Cell extracts of the mutant C. acetobutylicum hbd::int(69) revealed clearly reduced thiolase, Hbd and crotonase but increased NADH-dependent alcohol dehydrogenase enzyme activities as compared to the wildtype strain. Neither butyrate nor butanol were detected in cultures of C. acetobutylicum hbd::int(69), and the formation of molecular hydrogen was significantly reduced. Instead up to 16 and 20 g/l ethanol were produced in glucose and xylose batch cultures, respectively. Further sugar addition in glucose fed-batch fermentations increased the ethanol production to a final titer of 33 g/l, resulting in an ethanol to glucose yield of 0.38 g/g. 相似文献
8.
Ustilago maydis is known to produce glycolipid-type biosurfactants. Here, we show that U. maydis is able to efficiently convert biodiesel-derived crude glycerol to glycolipids. We have optimized the medium composition and environmental factors for bioconversion of crude glycerol to glycolipids. The synthetic medium (MinCG) contains 50 g L−1 crude glycerol and 20.3 mg L−1 ammonium citrate as the carbon and nitrogen sources, respectively. The supplementation of trace amount of amino acids, Group-B vitamins and precursors of glycolipids, mannose and erythritol, also improved the final yield. At pH 4.0 and 30 °C, 32.1 g L−1 total glycolipids was produced in a 8.2-day fed-batch bioprocess. Methanol at 2% or above severely inhibited cell growth and production of glycolipids. Our results suggest that U. maydis is an excellent host for the bioconversion of crude glycerol to value-added products. 相似文献
9.
The production of synthetic glycerol from petrochemical feedstocks has been decreasing in recent years. This is largely due
to increasing supplies of crude glycerol derived as a co-product from the oleochemical industry, especially biodiesel production.
The price of glycerol is at historic lows, and the supply of crude glycerol is projected to grow faster than its industrial
uses. This oversupply is driving the transition from glycerol as a product to glycerol as a precursor for new industrial applications,
including its use as a substrate for bioconversion. This article reviews the use of fungi for the bioconversion of crude glycerol
to the value-added products 1,2-propanediol, ethanol, single cell oil, specialty polyunsaturated fatty acids, biosurfactants,
and organic acids. Information on the impurities of crude glycerol from different industrial processes is also included. 相似文献
10.
Raffaela Cutzu Annalisa Coi Fulvia Rosso Laura Bardi Maurizio Ciani Marilena Budroni Giacomo Zara Severino Zara Ilaria Mannazzu 《World journal of microbiology & biotechnology》2013,29(6):1009-1017
In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R2 = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l?1) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l?1) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry. 相似文献
11.
12.
13.
Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production
下载免费PDF全文

Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable ‘coproduct’. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2‐propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol‐fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h?1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l?1) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell‐free extracts demonstrated that glycerol is degraded via glyceraldehyde‐3‐phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol. 相似文献
14.
The optimization of metabolic pathways is of fundamental importance for strategies aimed at improving the economics and yield of the lignocellulose-to-ethanol processes. Although Escherichia coli is capable of metabolizing a wide variety of substrates including hexoses and pentoses, its hexose metabolism is inferior to that of Zymomonas mobilis, an obligate, ethanologenic bacterium. We therefore inserted and expressed Z. mobilis genes encoding essential enzymes involved in the fermentation pathway, alcohol dehydrogenase II (adh II) and pyruvate decarboxylase (pdc), into E. coli, resulting in increased cell growth and ethanol production. Ethanol concentrations of > 30 g/L were obtained on 10% glucose. Additionally, since pyruvate is mainly assimilated through pyruvate formate lyase (pfl) and forms formic acid and acetyl coenzyme A, metabolic redirection was attempted through gene knockout by Red-mediated recombination to decrease the byproducts of pyruvate metabolism. Under microaerobic conditions, pflA- and pflB-mutants produced more ethanol (163% and 207%, respectively) relative to the parent strain, using glucose as a carbon source. 相似文献
15.
Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as 1,3-propanediol (1,3-PD), succinate, ethanol, propionate, and hydrogen, through microbial fermentation. Another method of waste material utilization is the application of crude glycerol in blends with other wastes (e.g., tomato waste hydrolysate). However, crude glycerol, a by-product of biodiesel production, has many impurities which can limit the yield of metabolites. In this mini-review we summarize the effects of crude glycerol impurities on various microbial fermentations and give an overview of the metabolites that can be synthesized by a number of prokaryotic and eukaryotic microorganisms when cultivated on glycerol. 相似文献
16.
17.
Zichao Wang Tao Ning Kun Gao Xiaojia He 《Preparative biochemistry & biotechnology》2013,43(8):807-812
AbstractCrude glycerol is becoming a financial and environmental liability due to its surplus production from biodiesel industry, and its utilization as a fermentation feedstock for value-added chemicals production has been widely studied. In present work, the capacity of an endophytic fungus, Chaetomium globosum CGMCC 6882, using glycerol and crude glycerol for polysaccharide production was investigated. Results showed that the polysaccharide titers from glucose and glycerol were 1.85 and 3.8?g/L, respectively. Moreover, spore morphology of C. globosum CGMCC 6882 was favorable for polysaccharide production. Meanwhile, impurities in crude glycerol have no effect on polysaccharide production by C. globosum CGMCC 6882. Finally, characteristic results of polysaccharides produced from glucose, glycerol, and crude glycerol have suggested that metabolic flux might be a determinant factor on polysaccharide structure. Taken together, this research provided an innovative approach of utilizing crude glycerol produced from the biodiesel production process. 相似文献
18.
Present biodiesel manufacturing processes inevitably produce a crude glycerol side fraction. Projected future volumes of biodiesel will generate enormous quantities of glycerol of a magnitude suggesting that conversion to a fuel is the only viable route. Here we have shown that the photosynthetic bacterium Rhodopseudomonas palustris is capable of the photofermentative conversion of glycerol, both pure and a crude glycerol fraction, to hydrogen, a proposed future fuel. Relatively high yields, up to 6 moles H2/mole glycerol (75% of theoretical, 8 moles of H2/mole glycerol) were obtained. Even the crude glycerol fraction, at the concentrations used here, was readily converted to hydrogen with no apparent evidence of inhibition or toxicity. We show that the concentration of added nitrogen can be used to modify both rates and yields of hydrogen production with an apparent trade-off between the two. Finally, some factors are identified that might be examined in future studies in attempts to increase rates and/or yields. 相似文献
19.
Medium compositions favoring butanol and 1,3-propanediol (1,3-PDO) production from glycerol by Clostridium pasteurianum DSM525 were investigated using statistical experimental designs. Medium components affecting butanol and 1,3-PDO production were screened using a fractional factorial experimental design. Among the six tested variables (phosphate buffer, MnSO4·H2O, MgSO4·7H2O, FeSO4·7H2O, (NH4)2SO4, and yeast extract), FeSO4·7H2O, (NH4)2SO4, and yeast extract were found to be significant variables for further optimization of medium using a Box-Behnken design. Optimal butanol (0.98 g/L/h) and 1,3-PDO (1.19 g/L/h) productivities were predicted by the corresponding quadratic model for each product and the models were validated experimentally under optimized conditions. The optimal medium composition for butanol production was significantly different from that for 1,3-PDO production (0.06 vs. 0 g/L for FeSO4·7H2O, 7.35 vs. 0 g/L for (NH4)2SO4, and 5.08 vs. 8.0 g/L for yeast extract), suggesting that the product formation from glycerol by C. pasteurianum DSM525 can be controlled by changing medium compositions. 相似文献