首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brewery effluent (BE) as an appreciable and sustainable resource presented new possibilities in low-cost algal biomass production, whereas the relatively low essential macronutrients hindered extensive applications as growth medium for microalgae cultivation. The objective of this study was to investigate the feasibility of an integrated treatment strategy initiated by BE coupling phytohormones in augmenting biomass and lipid accumulation in Coccomyxa subellipsoidea. Results revealed that BE coupling synthetic 1-naphthaleneacetic acid (NAA) accomplished the favorable lipid productivity of 481.76 mg/L/days, representing 6.80- to 9.71-fold more than that of single BE as well as standard Basal media. BE coupling NAA feeding also heightened the proportions of C16–C18 fatty acids (over 96%) and mono-unsaturated C18:1 (approximate 45%) which were prone to high-quality biofuels-making. Such profound lipids accumulation might be attributable to that BE coupling NAA treatment drove most of metabolic flux (i.e. acetyl-CoA) derived from TCA cycle and glycolysis flowing into lipid accumulation pathway. Concurrently, the complete removal of total nitrogen and total phosphorus by C. subellipsoidea with assistance of NAA were easily complied with the permissible dischargeable limits for BE. These present results strongly demonstrated that BE coupling NAA was a potential feeding strategy in boosting algal lipid productivity and further provided great possibilities in linking affordable algal biomass production with high-efficient biological contaminants removal.  相似文献   

2.
The lipid productivity controlled by both of biomass and lipid content was really crucial for economic-feasibility of microalgae-based biofuels production. This study attempted at augmenting lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by different nitrogen manipulation including one-stage continuous N-sufficiency (OCNS), N-deprivation (OCND), N-limitation (OCNL), and also two-stage batch N-starvation (TBNS). Amongst four tested nitrogen manipulation strategies, OCNS performed remarkable promoting effect on cell metabolic growth and the maximum biomass was achieved by 7.39 g/L. Whereas TBNS regime induced the highest lipid content (over 50.5%). Only OCNL treatment augmented the lipid productivity by 232.37 mg/L/day, representing 1.25-fold more than TBNS and even as much as 5.06-fold more than that of OCND strategy. OCNL also strengthened the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acid (C18:1) which were inclined to high-quality biofuels-making. This might be due to that most part of energy and metabolic flux (e.g. acetyl-CoA) derived from TCA cycle and glycolysis flowed into fatty acids biosynthesis pathway (especially C18:1) response to OCNL manipulation. This study represented a pioneering work of utilizing OCNL for lipids production by C. subellipsoidea and clearly implied that OCNL might be a feasible way for algal lipid production on a commercial scale and also promoted the potential of C. subellipsoidea as an ideal biodiesel feedstock.  相似文献   

3.
High lipid content in microalgae is an essential parameter for adopting of microalgal biomass as a feedstock for biodiesel. Mutation is one approach to obtain desired algal strain with high lipid production. In this study, a mutant strain of Chlorella pyrenoidosa was isolated using 1.5?×?1015 ions cm?2 s?1 of N+ ion beam implantation technique, which has been widely used in mutagenesis of agricultural crops. N+ implantation slightly improved the growth of the mutant over the corresponding wild strain with significant increase in lipid content (32.4 % higher than the wild strain), which resulted in significant increase in lipid productivity by 35 %. In addition, ion implantation mutagenesis of C. pyrenoidosa resulted in 21.4 % decrease in total saturated fatty acids (SFAs) compared to the wild type, with a noticeable increase in polyunsaturated fatty acids (PUFAs). The increase in PUFAs was due mainly to stimulation of hexadecadienoic acid (C16:2) and octadecadienoic acid (C18:2) production. However, the SFA content of wild and mutant strains was 31.7 and 24.9 % of total fatty acids, respectively, highlighting the oxidative stability of biodiesel produced by both strains according to the European standards. Cultivation of C. pyrenoidosa mutant in selenite enrichment medium for five successive cultivation experiments showed insignificant changes in biomass productivity, lipid content, and lipid productivity alongside the study period, which confirms the genetic stability of the produced mutant. The present study confirmed the feasibility of generation of microalgae mutants with significant high lipid production using ion beam implantation.  相似文献   

4.
A mixed trophic state production process for algal lipids for use as feedstock for renewable biofuel production was developed and deployed at subpilot scale using a green microalga, Auxenochlorella (Chlorella) protothecoides. The process is composed of two separate stages: (1) the photoautotrophic stage, focused on biomass production in open ponds, and (2) the heterotrophic stage focused on lipid production and accumulation in aerobic bioreactors using fixed carbon substrates (e.g., sugar). The process achieved biomass and lipid productivities of 0.5 and 0.27 g/L/h that were, respectively, over 250 and 670 times higher than those obtained from the photoautotrophic cultivation stage. The biomass oil content (over 60 % w/DCW) following the two-stage process was predominantly monounsaturated fatty acids (~82 %) and largely free of contaminating pigments that is more suitable for biodiesel production than photosynthetically generated lipid. Similar process performances were obtained using cassava hydrolysate as an alternative feedstock to glucose.  相似文献   

5.
Increased lipid accumulation of algal cells as a response to environmental stress factors attracted much attention of researchers to incorporate this stress response into industrial algal cultivation process with the aim of enhancing algal lipid productivity. This study applies high-salinity stress condition to a two-phase process in which microalgal cells are initially grown in freshwater medium until late exponential phase and subsequently subjected to high-salinity condition that induces excessive lipid accumulation. Our initial experiment revealed that the concentrated culture of Chlorella sorokiniana HS1 exhibited the intense fluorescence of Nile red at the NaCl concentration of 60 g/L along with 1 g/L of supplemental bicarbonate after 48 h of induction period without significantly compromising cultural integrity. These conditions were further verified with the algal culture grown for 7 days in a 1 L bottle reactor that reached late exponential phase; a 12% increment in the lipid content of harvested biomass was observed upon inducing high lipid accumulation in the concentrated algal culture at the density of 5.0 g DW/L. Although an increase in the sum of carbohydrate and lipid contents of harvested biomass indicated that the external carbon source supplemented during the induction period increased overall carbon assimilation, a decrease in carbohydrate content suggested the potential reallocation of cellular carbon that promoted lipid droplet formation under high-salinity stress. These results thus emphasize that the two-phase process can be successfully implemented to enhance algal lipid productivity by incorporating high-salinity stress conditions into the pre-concentrated sedimentation ponds of industrial algal production system.  相似文献   

6.
The microalga Nannochloropsis sp. was cultured under different initial population densities (IPDs) ranging from 0.11 to 9.09 g L?1. The IPD affected the biomass and lipid accumulation significantly. The algal cultured with higher IPD resulted higher biomass concentration (up to 13.07 g L?1) in 10 days growth. The biomass productivity with 0.98 g L?1 IPD was 0.75 g L?1 d?1 which was higher than that of other IPDs. For IPDs ranging from 0.11 to 0.98 g L?1, with the increase of IPD, the biomass productivity increased, while for IPD over 0.98 g L?1, the biomass productivity decreased. Lipid content of the algal culture started with 0.11 g L?1 IPD reached to 42 % of dry weight. But with the increase of IPD, the lipid content decreased. Lipid composition was analyzed using thin layer chromatography coupled with flame ionization detection (TLC/FID). Seven lipid classes were identified and quantified. The main reserve lipid, triacylglyceride (TAG), accumulated under all different IPD conditions. However, with the increasing IPD values, TAG content decreased from 59.1 to 23.5 % of the total lipids. Based on these results, to obtain the maximal biomass productivity and lipid productivity of Nannochloropsis sp. in mass cultivation systems, it is necessary to select an appropriate IPD.  相似文献   

7.
A key reason inhibiting commercialization of algal oil as biodiesel feedstock, is cultivation cost. For this reason, the usability of 19 readily available industrial effluents (autoclaved and non-autoclaved) to support heterotrophic growth and lipid accumulation was evaluated using six mixed algal cultures. Autoclaved whey effluent was the best with 14.32 g biomass L?1, 13.23% lipids, resulting in a lipid production of 1.91 g lipids L?1. Biomass production and lipid accumulation were in many cases inverse, e.g. mixed algal culture termed TUT4 accumulating 84.25% lipids on autoclaved acid mine drainage, with very little biomass produced. Biomass production was dependent on the effluent type, whereas the lipid accumulation was influenced mostly by the specific mixed algal cultures. The fatty acid composition of the algal oil (fish cannery and whey effluents) showed high saturation, leading to acceptable cetane numbers, kinematic viscosity, good oxidative stability, but poor cold flow properties.  相似文献   

8.
Semi-continuous algal cultivation was completed in outdoor flat-panel photobioreactors (panels) and open raceway ponds (raceways) from February 17 to May 7, 2015 for side-by-side comparison of areal productivities at the Arizona Center for Algae Technology and Innovation in Mesa, AZ, USA. Experiments used two strains of Scenedesmus acutus (strains LB 0414 and LB 0424) to assess productivity, areal density, nutrient removal, and harvest volume across cultivation systems and algal strains. Panels showed an average biomass productivity of 19.0?±?0.6 g m?2 day?1 compared to 6.62?±?2.3 g m?2 day?1 for raceways. Photosynthetic efficiency ranged between 1.32 and 2.24 % for panels and between 0.30 and 0.68 % for raceways. Panels showed an average nitrogen consumption rate of 38.4?±?8.6 mg N L?1 day?1. Cultivation in raceways showed a consumption rate of 3.8?±?2.5 and 7.1?±?4.2 mg N L?1 day?1 for February/March and April/May, respectively, due to increase in biomass productivity. Excess nutrients were required to prevent a decrease in productivity. Daily biomass harvest volumes between 18 and 36 % from panels did not affect culture productivity, but density decreased with increased harvest volume. High cultivation temperatures above 30 °C caused strain LB 0414 to lyse and crash. Strain LB 0424 did not show any difference in biomass productivity when peak temperatures reached 34, 38, or 42 °C, but showed decreased productivity when the peak temperature during cultivation was 30 °C. Using algal strains with different temperature tolerances can generate increased annual biomass productivity.  相似文献   

9.
A laboratory study was conducted on biomass and lipid production by Scenedesmus sp. and the removal of total nitrogen (TN) and total phosphorus (TP) from filtered anaerobically digested piggery wastewater. The dry weight (DW), lipid content and productivity, total nitrogen, and total phosphorus removal rate were assessed in five media: modified soil extract (MSE) medium, 5 % anaerobic digested wastewater (ADWW), 10 % ADWW, 15 % ADWW, and 5 % ADWW supplemented with NaNO3. The highest biomass productivity appeared in the 15 % ADWW group, which was 20.4 % higher than MSE group. The highest lipid content was found in the 5 % ADWW group (31.60 %), while the highest lipid productivity was in the 10 % ADWW group (27.01 mg L?1 day?1). Compared with the 5 % ADWW group, the 5 % ADWW group supplemented with NaNO3 had a similar biomass amount but lower lipid content and productivity. The fatty acids percentage of Scenedesmus sp. showed a slight difference in different media, but with the four dominant fatty acids (C16:0, C18:1, C18:2, C18:3) accounting for 87 % of the total fatty acids, suggests that Scenedesmus sp. in ADWW medium was no different than MSE in terms of lipid composition and content. TN removal rates were 82.85, 82.51, 85.85, 91.28, and 78.71 % in groups 1 to 5, and TP removal rates were 53.05, 88.53, 87.77, 88.72, and 80.64 %. Our experiment also shows the feasibility of using ADWW as a substitute of all the elements of MSE medium except for carbon, which would significantly reduce the costs of microalgal culture.  相似文献   

10.
Manipulation of the nutrient concentration is an inexpensive and efficient method for increasing lipid and TAG accumulation in algal cells. However, high volumetric production requires finding a proper balance between the decrease of biomass production and the increase in the total lipid content. We isolated a strain of green microalga Bracteacoccus bullatus and increased its lipid content from 17 to 59% of biomass dry weight by manipulating of nitrogen and phosphorus content in the medium. The 10-fold reduction of the nitrogen and phosphorus concentration in the medium was the most efficient method of the lipid induction compared to nutrient deplete and high nutrient conditions. The oleic (48–64% mass of total fatty acids) and linoleic (14–24% mass of total fatty acids) acids dominated in the fatty acid profile, thus making this strain a suitable candidate for biodiesel production.  相似文献   

11.
In this study, hypersaline media were used for ocean cultivation of the marine microalga Tetraselmis sp. KCTC12432BP for enhanced biomass and fatty acid (FA) productivity. Hypersaline media (55, 80, and 105 PSU) were prepared without sterilization by addition of NaCl to seawater obtained from Incheon, Korea. The highest biomass productivity was obtained at 55 PSU (0.16 g L?1 day?1) followed by 80 PSU (0.15 g L?1 day?1). Although the specific growth rate of Tetraselmis decreased at salinities higher than 55 PSU, prevention of contamination led to higher biomass productivity at 80 PSU than at 30 PSU (0.03 g L?1 day?1). FA content of algal biomass increased as salinity increased to 80 PSU, above which it declined, and FA productivity was highest at 80 PSU. Ocean cultivation of Tetraselmis was performed using 50-L tubular module photobioreactors and 2.5-kL square basic ponds, closed- and open-type ocean culture systems, respectively. Culturing microalgae in hypersaline medium (80 PSU) improved biomass productivities by 89 and 152% in closed and open cultures, respectively, compared with cultures with regular salinity. FA productivity was greatly improved by 369% in the closed cultures. The efficacy of salinity shift and N-deficiency to enhance FA productivity was also investigated. Lowering salinity to 30 PSU with N-starvation following cultivation at 80 PSU improved FA productivity by 19% in comparison with single-stage culture without N-deficiency at 30 PSU. The results show that salinity manipulation could be an effective strategy to improve biomass and FA productivity in ocean cultivation of Tetraselmis sp.  相似文献   

12.
The present study reports evaluation of an indigenous microalgal isolate Chlorella sp. FC2 IITG as a potential candidate for biodiesel production. Characterization of the strain was performed under photoautotrophic, heterotrophic, and mixotrophic cultivation conditions. Further, an open-pond cultivation of the strain under outdoor conditions was demonstrated to evaluate growth performance and lipid productivity under fluctuating environmental parameters and in the presence of potential contaminants. The key findings were: (1) the difference in cultivation conditions resulted in significant variation in the biomass productivity (73–114 mg l?1 day?1) and total lipid productivity (35.02–50.42 mg l?1 day?1) of the strain; (2) nitrate and phosphate starvation were found to be the triggers for lipid accumulation in the cell mass; (3) open-pond cultivation of the strain under outdoor conditions resulted in biomass productivity of 44 mg l?1 day?1 and total lipid productivity of 10.7 mg l?1 day?1; (4) a maximum detectable bacterial contamination of 7 % of the total number of cells was recorded in an open-pond system; and (5) fatty acid profiling revealed abundance of palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2), which are considered to be the key elements for suitable quality biodiesel.  相似文献   

13.
Lipid accumulation is critical in the production of biodiesel from microalgae. However, little work has been done on the assessment of lipid accumulation during nitrogen stress in large research-scale outdoor raceways during different seasons; most values for lipid accumulation are assumptions based on work completed in laboratory settings or outdoor photobioreactors. This study focused on the use of raceway ponds operated in batch cultivation mode with an area of 30.37 m2 to determine the impacts of nitrate-nitrogen concentration and cultivation depth on the ability of Scenedesmus acutus strain LB 0414 to accumulate lipids. A concentration of less than 60 mg N-NO3 ??L?1 was required for removal of nitrogen in the cultivation medium within 8 days to stimulate lipid accumulation and increase lipid productivity. When nitrate concentrations were increased to prevent nitrogen depletion, lipid productivity decreased, which demonstrates that stressing is needed to induce lipid accumulation for increased lipid productivity. Additionally, decreasing cultivation depth below 9 cm, compared to raceways operated at a depth of 20–24 cm, increased lipid productivity by 62 % in December 2014 and 38 % in February 2015. More desirable environmental conditions, mainly increased sunlight and temperature, in February, increased biodiesel productivity for all raceways and account for the decrease in productivity differences. This research highlights increased lipid productivity found by reducing cultivation depth and nitrogen concentrations in outdoor raceways and provides insight into the optimal conditions for large-scale biodiesel production.  相似文献   

14.
Volatile fatty acids (VFAs) that can be derived from food wastes were used for microbial lipid production by Chlorella protothecoides in heterotrophic cultures. The usage of VFAs as carbon sources for lipid accumulation was investigated in batch cultures. Culture medium, culture temperature, and nitrogen sources were explored for lipid production in the heterotrophic cultivation. The concentration and the ratio of VFAs exhibited significant influence on cell growth and lipid accumulation. The highest lipid yield coefficient and lipid content of C. protothecoides grown on VFAs were 0.187 g/g and 48.7 %, respectively. The lipid content and fatty acids produced using VFAs as carbon sources were similar to those seen on growth and production using glucose. The techno-economic analysis indicates that the biodiesel derived from the lipids produced by heterotrophic C. protothecoides with VFAs as carbon sources is very promising and competitive with other biofuels and fossil fuels.  相似文献   

15.
In this study, an alga-based simultaneous process of treating swine wastewater (SWW) and producing biodiesel was explored. Chlorella vulgaris (UTEX-265) was employed as a model species, and a SWW-based medium was prepared by dilution with tap water. Chlorella vulgaris grew well in the SWW-based medium, and at optimum dilution ratios, it exceeded the conventional culture medium in terms of biomass concentration and productivity. In eightfold diluted SWW, which supported the maximum growth, biomass productivity was 0.247 g L?1 day?1, while the productivity was merely 0.165 g L?1 day?1 in standard tris-acetate-phosphorous (TAP) algal medium. In addition, fatty acid methyl ester (FAME) productivity was greater in the SWW-based medium (0.067 versus 0.058 g L?1 day?1). This enhanced productivity resulted in more than 95 % removal of both nitrogen and phosphorous. All these show that C. vulgaris cultivation is indeed possible in a nutrient-rich wastewater with appropriate dilution, and in so doing, the wastewater can effectively be treated.  相似文献   

16.
Thirty Chlorella and 30 Scenedesmus strains grown in nitrogen-stressed conditions (70 mg L?1 N) were analyzed for biomass accumulation, lipid productivity, protein, and fatty acid (FA) composition. Scenedesmus strains produced more biomass (4.02?±?0.73 g L?1) after 14 days in culture compared to Chlorella strains (2.57?±?0.12 g L?1). Protein content decreased and lipid content increased from days 8 to 14 with an increase in triacylglycerol (TAG) accumulation in most strains. By day 14, Scenedesmus strains generally had higher lipid productivity (53.5?±?3.7 mg lipid L?1 day?1) than Chlorella strains (35.1?±?2.8 mg lipid L?1 day?1) with the lipids consisting mainly of C16–18 TAGs. Scenedesmus strains generally had a more suitable FA profile with higher amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs) and a smaller polyunsaturated fatty acid (PUFA) component. Chlorella strains had a larger PUFA component and smaller MUFA component. The general trend in the FA composition of Chlorella strains was oleic > palmitic > α-linolenic = linoleic > eicosenoic > heptadecenoic > stearic acid. For Scenedesmus strains, the general trend was oleic > palmitic > linoleic > α-linolenic > stearic > eicosenoic > palmitoleic > heptadecenoic acid. The most promising strains with the highest lipid productivity and most suitable FA profiles were Scenedesmus sp. MACC 401, Scenedesmus soli MACC 721, and Scenedesmus ecornis MACC 714. Although Chlorella sp. MACC 519 had lower lipid productivity, the FA profile was good with a lower PUFA component compared to the other Chlorella strains analyzed and a low linolenic acid concentration.  相似文献   

17.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

18.
The appropriate microalgal species and the optimal nitrogen supply in culture medium are vital factors in maximizing biomass and metabolite productivities in microalgae. Vischeria stellata is an edaphic unicellular eustigmatophycean microalga. Cytological and ultrastructural characteristics and the effects of different initial nitrate-nitrogen concentrations on growth, lipid accumulation, fatty acid profile, and pigment composition were investigated in the present study. The cell structures of V. stellata changed with the degree of nutrient utilization and growth phase. The initial nitrate concentration for the optimal growth of V. stellata ranged from 6.0 to 9.0 mM. The maximum total lipid (TLs), neutral lipid (NLs), and total fatty acid (TFAs) contents were 55.9, 51.9, and 44.7 % of dry biomass, respectively. The highest volumetric productivity of TLs, NLs, and TFAs reached 0.28, 0.25, and 0.21 g L?1 day?1, respectively. V. stellata had a suitable fatty acid profile for biodiesel production, as well as containing eicosapentaenoic acid (EPA) for nutraceutical applications. In addition, the content β-carotene, increased gradually as culture time was prolonged, resulting in its exclusive production at the end of cultivation. V. stellata is a promising microalgal strain for the production of biofuels and bioproducts.  相似文献   

19.
Large improvements in biomass and lipid production are required to make massive scale algal biodiesel production an economic reality. The application of the biodiversity strategy to enhance algal biomass as biofuel feedstock is little. The algal diversity was manipulated in this study to investigate the effects of a combination of biodiversity complementarity and a new medium consisting of seawater and agricultural fertilizer on lipid productivity. The algae diverse community includes two strains of Dunaliella salina (Dunaliella salina 19/30 and 19/18) and three species of Nannochloropsis (Nannochloropsis oculata, Nannochloropsis salina, and Nannochloropsis gaditana). The results showed that the most diverse community (5 species) produced an average of sixfold more biomass in the new medium than did the standard f/2 culture medium. The most diverse polyculture had the highest growth rate (1.01 day?1), biomass (1.2 g L?1), and lipid productivity (0.31 g L?1 day?1). The assessment of algal polycultures relative to monocultures is particularly interesting and novel for this biofuel field, and the observations that these polycultures resulted in significant lipid productivity improvements are very useful addition to the biofuel research. The possible mechanism (resource diversity) to explain the synergy in mixed cultures warrants further investigation.  相似文献   

20.
Temperature and light intensity effects on biomass and lipid production were investigated in Ettlia oleoabundans to better understand some fundamental properties of this potentially useful but poorly studied microalgal species. E. oleoabundans entered dormant state at 5 °C, showed growth at 10 °C, and when exposed to light at 70 μmol photons per square meter per second at 10 °C, cells reached a biomass concentration of >2.0 g?L?1 with fatty acid methyl esters of 11.5 mg?L?1. Highest biomass productivity was at 15 °C and 25 °C regardless of light intensity, and accumulation of intracellular lipids was stimulated by nitrate depletion under these conditions. Although growth was inhibited at 35 °C, at 130 μmol photons per square meter per second lipid content reached 10.37 mg?L?1 with fatty acid content more favorable to biodiesel dominating; this occurred without nitrate depletion. In a two-phase temperature shift experiment at two nitrate levels, cells were shifted after 21 days at 15 °C to 35 °C for 8 days. Although after the shift growth continued, lipid productivity per cell was less than that in the 35 °C cultures, again without nitrate depletion. This study showed that E. oleoabundans grows well at low temperature and light intensity, and high temperature can be a useful trigger for lipid accumulation independent of nitrate depletion. This will prove useful for improving our knowledge about lipid production in this and other oleaginous algae for modifying yield and quality of algal lipids being considered for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号