首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on the distribution of root biomass are critical to understanding the ecophysiology of vegetation communities. This is particularly true when models are applied to describe ecohydrology and vegetation function. However, there is a paucity of such information across continental Australia. We quantified vertical and horizontal root biomass distribution in a woodland dominated by Angophora bakeri and Eucalyptus sclerophylla on the Cumberland Plains near Richmond, New South Wales. The site was characterised by a duplex (texture contrast) soil with the A horizon (to 70 cm) consisting of loamy sand and the B horizon (to > 10 m) consisting of sandy clay. The topsoil had a smaller bulk density, a smaller water holding capacity but a larger organic component and a larger hydraulic conductivity in comparison to the subsoil. Root biomass was sampled to 1.5 m depth and declined through the soil profile. Whilst total biomass in the B horizon was relatively small, its contribution to the function of the trees was highly significant. Coarse roots accounted for approximately 82% of the root mass recovered. Lateral distribution of fine roots was generally even but coarse roots were more likely to occur closer to tree stems. Variation in tree diameter explained 75% of the variation in total below-ground biomass. The trench method suggested the belowground biomass was 6.03?±?1.21 kg m?2 but this method created bias towards sampling close to tree stems. We found that approximately 68% of root material was within a 2 m radius of tree stems and this made up 54% of the total number of samples but in reality, only approximately 5 to 10% of the site is within a 2 m radius of tree stems. Based on these proportions, our recalculated belowground biomass was 2.93?±?0.59 kg m?2. These measurements provide valuable data for modeling of ecosystem water use and productivity.  相似文献   

2.
Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44–45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80–0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2–3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2–3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.  相似文献   

3.
植物根系是全球陆地生态系统碳储量的重要组成部分,在全球生态系统碳循环中起着重要作用,日益加剧的氮沉降会影响根系生物量在空间和不同径级的分配,进而影响森林生态系统的生产力和土壤养分循环。以杉木幼树为研究对象,通过野外氮沉降模拟实验,研究氮沉降四年后对不同土层、不同径级根系生物量的影响。结果发现:(1)低氮和高氮处理总细根生物量较对照均无显著差异(P > 0.05),高氮处理粗根生物量及总根系生物量较对照分别增加45%和40%(P < 0.05);(2)与对照相比,施氮处理显著增加20-40 cm与40-60 cm土层细根和粗根生物量,且在低氮处理下,20-40 cm土层细根、粗根在总土层细根与粗根生物量的占比显著提高。(3)与对照相比,高氮处理显著增加了2-5 mm、5-10 mm及10-20 mm径级的根系生物量,低氮处理显著增加2-5 mm、5-10 mm径级根系生物量,且显著降低20-50 mm径级根系生物量。综上所述表明:氮沉降后杉木幼树通过增加较粗径级根系来增加对养分及水分的输送,同时通过增加深层根系生物量及其比例的策略来维持杉木幼树的快速生长;而根系生物量的增加,在一定程度上会增加根系碳源的输入,影响土壤碳循环过程。  相似文献   

4.
The distribution of root biomass and physical and chemical properties of the soils were studied in a semideciduous and in a lower montane rain forest in Panama. Roots and soil samples were taken by means of soil cores (25 cm deep) and divided into five, 5-cm deep sections. Soils were wet-sieved to retrieve the roots that were classified in four diameter classes: very fine roots (<1 mm), fine roots (1–2 mm), medium roots (2–5 mm) and coarse roots (5–50 mm). Soil samples were analyzed for organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, pH, aluminium and exchangeable acidity. Total root biomass measured with the soil corer (roots <50 mm in diameter) was not different between the forests (9.45 t ha-1), while biomass of very fine roots was larger in the mountains (2.00 t ha-1) than in the lowlands (1.44 t ha-1). The soils in the semideciduous forest were low in available phosphorus, while in the mountains, soils had low pH, high exchangeable aluminium and exchangeable acidity, and low concentration of exchangeable bases. Phosphorus was in high concentration only in the first 5 cm of the soil. In both forests, there was an exponential reduction of root biomass with increasing depth, and most of the variation in the vertical distribution of roots less than 2 mm in diameter was explained by the concentration of nitrogen in the soils. The results of this study support the hypothesis that a large root biomass in montane forests is related to nutrients in low concentration and diluted in organic soils with high CEC and low bulk density, and that fine root biomass in tropical forests in inversely related to calcium availability but not a phosphorus as has been suggested for other forests.  相似文献   

5.
Increasing evidence suggests that forest soils in central and northern Europe as well as in North America have been significantly acidified by acid deposition during the last decades. The present investigation was undertaken to examine the effect of soil acidity on rooting patterns of 40-year-old Norway spruce trees by comparing fine and coarse roots among four stands which differed in soil acidity and Mg (and Ca) nutrition. The coarse root systems of four to five 40-year-old Norway spruce trees per stand were manually excavated. The sum of cross sectional area (CSA) at 60 cm soil depth and below of all vertical coarse roots, as a measure of vertical rooting intensity, was strongly reduced with increasing subsoil acidity of the stands. This pattern was confirmed when 5 additional acidic sites were included in the analysis. Fine root biomass in the mineral soil estimated by repeated soil coring was strongly reduced in the heavily acidified stands, but increased in the humic layer. Using ingrowth cores and a screen technique, we showed that the higher root biomass in the humic layer of the more acidic stands was a result of higher root production. Thus, reduced fine root biomass and coarse root CSA in deeper soil layers coincided with increased root growth in the humic layer. Root mineral analysis showed Ca/Al ratios decreased with decreasing base saturation in the deeper mineral soil (20–40 cm). In the top mineral soil, only minor differences were observed among stands. In general, low Ca/Al ratios coincided with low fine root biomass. Calcium/aluminum ratios determined in cortical cell walls using X-ray microanalysis showed a similar pattern as Ca/Al ratios based on analysis of whole fine roots, although the amplitude of changes among the stands was much greater. Aluminum concentrations and Ca/Al ratios in cortical cell walls were at levels found to inhibit root growth of spruce seedlings in laboratory experiments. The data support the idea that Al (or Ca/Al ratios) and acid deposition-induced Mg (and possibly Ca) deficiency are important factors influencing root growth and distribution in acidic forest soils. Changes in carbon partitioning within the root system may contribute to a reduction in deep root growth.  相似文献   

6.
This study develops a feasible method for evaluating coarse root biomass (roots >2 mm diameter) of well established plantations of eucalypts and then examines coarse root biomass variability across tree age and size, fertilization treatment, species and site for Eucalyptus globulus and E. nitens in Tasmania, Australia. The most efficient sampling protocol consisted of rootball excavation and soil coring for bulk coarse roots, which when compared with total tree excavation estimated total coarse root biomass contained inside the sampled area to within 10%. Across all treatments, an average of 76% of the coarse root biomass was located within the rootball. The majority (>65%) of the coarse roots outside the rootball were located in the surface 20 cm of soil. When size class distribution was examined, 75% of coarse root biomass was found to occur in the larger (20+ mm) diameter size class, a size class that displayed considerable spatial heterogeneity. At the stand level, coarse root biomass ranged from 2.18 to 7.38 kg m -2 depending primarily on tree size but also on fertilization treatment, species and site. It is estimated that allocation to coarse root biomass production was around 0.2 kg m -2 year -1 (around 6% of estimated NPP) for the E. nitens stands examined in this study and around 1 kg m -2 year -1 (around 20% of estimated NPP) for the E. globulus stand examined. Robust relationships using above-ground parameters could be used to predict coarse root biomass regardless of fertilization or site, but species changed the relationship.  相似文献   

7.
It has been reported that ground-penetrating radar (GPR) is a nondestructive tool that can be used to detect coarse roots in forest soils. However, successful GPR application for root detection has been site-specific and numerous factors can interfere with the resolution of the roots. We evaluated the effects of root diameter, root volumetric water content, and vertical and horizontal intervals between roots on the root detection of Cryptomeria japonica in sand using 900-MHz GPR. We found that roots greater than 19 mm in diameter were clearly detected. Roots having high volumetric water content were easily detected, but roots with less than 20% water content were not detected. Two roots that were located closely together were not individually distinguished. These results confirm that root diameter, root water content, and intervals between roots are important factors when using GPR for root detection and that these factors lead to an underestimation of root biomass.  相似文献   

8.
Root growth inhibition is an early symptom of Al toxicity and B deficiency. Our hypothesis is that Al toxicity may induce B deficiency, and it was our objective to determine if incorporation of supplemental B would promote root penetration into an acidic, high-Al subsoil. Alfalfa (Medicago sativa L. cv. Hy-Phy) was grown in slanted tubes with a Plexiglas window along their length. The top half of the tub contained silt loam soil and the bottom half contained subsoil from the Bt1 horizon (26% Al saturation) of a Creldon silty clay loam. Both soils originally contained 0–9 kg B ha?1. When root growth was measured in the bottom half of the high-A1 subsoil, all measurements—depth of rooting, total root growth, final root lengths and root dry weight—demonstrated greater root growth in treatments where additional B was incorporated into the high-Al subsoil. Results from this soil study extend those obtained in our hydroponic study in which supplemental B presented Al inhibition of root growth. Boron concentrations may need to he increased under acidic ‘high-Al’ soil conditions to promote root penetration into these soil zones, and this could be especially important during periods of drought stress.  相似文献   

9.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:1,自引:1,他引:0  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

10.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:39,自引:3,他引:39  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

11.
We analysed the abundance, spatial distribution and soil contact of wheat roots in dense, structured subsoil to determine whether incomplete extraction of subsoil water was due to root system limitations. Intact soil cores were collected to 1.6 m below wheat crops at maturity on a red Kandosol in southern Australia. Wheat roots, remnant roots, soil pores and root–soil contact were quantified at fresh breaks in the soil cores. In surface soil layers (<0.6 m) 30–40% of roots were clumped within pores and cracks in the soil, increasing to 85–100% in the subsoil (>0.6 m), where 44% of roots were in pores with at least three other roots. Most pores contained no roots, with occupancy declining from 20% in surface layers to 5% in subsoil. Wheat roots clumped into pores contacted the surrounding soil via numerous root hairs, whereas roots in cracks were appressed to the soil surface and had very few root hairs. Calculations assuming good root–soil contact indicated that root density was sufficient to extract available subsoil water, suggesting that uptake is constrained at the root–soil interface. To increase extraction of subsoil water, genetic targets could include increasing root–soil contact with denser root hairs, and increasing root proliferation to utilize existing soil pores.  相似文献   

12.
The soil pH in the vicinity of the roots can be changed by an imbalance in supply of predominant anions or cations. A soil column experiment examined the effects of localised supply of nitrate and P on plant growth and pH change in a Podosol (pH 3.76 in 0.01 M CaCl2 and pH buffering capacity 0.81 cmol kg?1 pH?1). Nitrate [(Ca(NO3)2] and P [(NaH2PO4)] fertilizers were applied alone or in combination to either 0–5 cm or 10–15 cm layer of the soil column. Aluminium-tolerant (ET8) and sensitive (ES8) wheat (Triticum aestivum, L) were grown for 38 days. Plant height, water use and tiller number were measured during the growth period. Biomass production, root growth and soil pH were determined at the final harvest. On average, ET8 had a greater shoot biomass, root length and water use than ES8. The greatest shoot biomass and water use were achieved where N and P were applied together in the 0–5 cm layer, followed by N and P together in the 10–15 cm layer and the lowest where N was applied in the 0–5 cm and P in the 10–15 cm layer. Root length density in the subsoil was greatest where N and P were applied together followed by N alone, and the lowest with the supply of P alone. The effect of localised supply was greater on rhizosphere pH than bulk soil pH. The application of N and P together in topsoil and subsoil layers increased rhizosphere pH by 0.4 and 0.5 units respectively, compared to the corresponding layers in the treatment where N and P were applied uniformly in the whole soil column. Changes in rhizosphere pH were similar under both genotypes, although ET8 produced more roots than ES8 in the soil profile. The results suggest that the combined application of nitrate and P is necessary to maximise root proliferation and root-induced alkalisation in acid subsoil.  相似文献   

13.
The effect of soil strength on the growth of pigeonpea radicles and seedlings was investigated in cores of three clay soils prepared at different water contents and bulk densities in the laboratory.Radicle elongation directly into soil cores was reduced from 50–70 mm d-1 at strengths less than 0.5 MPa to 0 mm d-1 at 3.5–3.7 MPa. The response to soil strength was affected by the water content of the soil, presumably as a result of reduced oxygen availability in wetter soil. This effect was apparent in soils wet to air-filled porosities less than 0.15 m3 m-3.Radicles were more sensitive to high soil strength (>1.5 MPa) than were seedling roots which encountered the same conditions at 60 mm in the profile. Radicle growth ceased at 3.5 MPa which reduced seedling root growth by only 60%.Despite a 60% reduction in root length in the high strength zone, seedling roots compensated in zones of loose soil above and below the compacted layer, and total root length and shoot growth were unaffected. There was no evidence of a root signal response which results in reduced shoot growth in some species in response to high soil strength.The proliferation of roots in surface layers and the delayed penetration of the root system to depth in compacted soil are likely to expose seedlings to a greater risk of water-deficit in the field, particularly under dryland conditions where plants rely on stored subsoil water for growth.  相似文献   

14.
Heinonsalo  J.  Hurme  K.-R.  Sen  R. 《Plant and Soil》2004,259(1-2):111-121
In northern boreal forests, podzolic soils prevail that comprise of a distinct upper organic humus/mor (O) horizon that is supported by underlying eluvial (E) and illuvial (B) mineral horizons. The dominant tree species, Scots pine (Pinus sylvestris L.), is known to be highly dependent on root symbiosis with ectomycorrhizal fungi that develop in constituent podzol horizons for growth in these nutrient limited soils. The aim of this microcosm-based study was a quantification of photosynthetically fixed 14C allocation, following standard pulse-feeding of 7-month-old Scots pine seedling shoots, to respective root and mycorrhizosphere compartments that developed in the reconstructed podzol (O, E and B) profile. Biomass of roots and mycorrhizas decreased with increasing soil depth but no soil origin, control forest vs. clear-cut area, related differences were observed. Similarly, no major soil origin- or podzol horizon-related differences in categorised ectomycorrhizal morphotypes and number of mycorrhizas, in relation to pooled root and mycorrhiza biomass, were detected. However, the total recovery of 14C-label was significantly higher in clear-cut soil microcosms compared to control counterparts. A significant finding was equivalent 14C-carbon allocation to roots and ectomycorrhizas in all three major, organic and mineral, podzol profile horizons studied. These carbon allocation data provide additional support for direct (or indirect) roles of roots and symbiotic mycorrhizal fungi in mineral weathering and biodegradation of organic ligands that are central for plant acquisition of growth limiting nutrients and the podzolization process in boreal forest ecosystems.  相似文献   

15.

Background and aims

Soil compaction strongly affects water uptake by roots. The aim of the work was to examine soil—plant interactions with focus on the impact of distribution of compacted soil layers on growth and water uptake by wheat roots.

Methods

The growth-chamber experiment was conducted on wheat growth in soil with compacted soil layers. The system for maintaining constant soil water potential and measurement of daily water uptake from variously compacted soil layers was used.

Results

Layered soil compaction differentiated vertical root distribution to higher extent for root length than root mass. The propagation rate of a water extraction front was the highest through layers of moderately compacted soil. The root water uptake rate was on average 67 % higher from moderately than heavily compacted soil layers. Correlations between water uptake and the length of thick roots were increasing with increasing level of soil compaction.

Conclusions

The study shows that root amount, water uptake, propagation of water extraction and shoot growth strongly depend on the existence of compacted layers within soil profile. The negative effects of heavily compacted subsoil layer on water uptake were partly compensated by increased uptake from looser top soil layers and significant contribution of thicker roots in water uptake.  相似文献   

16.
荒漠绿洲湿地土壤优先流与水分入渗特征   总被引:4,自引:0,他引:4  
朱钊岑  刘冰  刘婵  司瑞 《生态学报》2020,40(12):3979-3990
地表水分、溶质和污染物以土壤优先流的形式下渗到深层土壤或地下水中,将导致土壤养分流失与地下水污染等问题。因此,土壤优先流研究将为干旱区荒漠绿洲湿地水分运移与盐分积累过程提供理论依据。以荒漠绿洲湿地为研究区,选取柽柳灌丛、盐碱草地和杨树林,以道路为对照,采用室外染色示踪法对湿地土壤优先流特征与水分入渗进行研究。结果表明:不同植被类型土壤优先流入渗深度存在显著差异,其柽柳灌丛和盐碱草地几乎是杨树林和道的2倍;染色面积比随深度的增加而波动下降,0—20 cm土层染色面积比占总染色面积的54.42%—89.27%;染色路径宽度以20—250 mm和>250 mm为主;优先流类型以高相互作用混合流和非均质指流为主。在荒漠绿洲湿地,砾石促进土壤优先流发生,增加了侧向流;同时,粗根的减少抑制了优先流的发生;此外,土壤盐分通过影响土壤大孔隙分布而影响水分入渗过程。因此,荒漠绿洲湿地土壤优先流与水分入渗差异是土壤质地、根系分布与盐分离子共同作用的结果。  相似文献   

17.
Sodium as nutrient and toxicant   总被引:3,自引:0,他引:3  

Background and Scope

Because of the crucial role coarse roots (>2 mm diameter) play in plant functions and terrestrial ecosystems, detecting and quantifying the size, architecture, and biomass of coarse roots are important. Traditional excavation methods are labor intensive and destructive, with limited quantification and repeatability of measurements over time. As a nondestructive geophysical tool for delineating buried features in shallow subsurface, ground penetrating radar (GPR) has been applied for coarse root detection since 1999. This article reviews the state-of-knowledge of coarse root detection and quantification using GPR, and discusses its potentials, constraints, possible solutions, and future outlooks. Some useful suggestions are provided that can guide future studies in this field.

Conclusions

The feasibility and accuracy of coarse root investigation by GPR have been tested in various site conditions (mostly in controlled conditions or within plantations) and for different plant species (mostly tree root systems). Thus far, single coarse root identification and coarse root system mapping have been conducted using GPR, including roots under pavements in urban environment. Coarse root diameter and biomass have been estimated from indexes extracted from root GPR radargrams. Coarse root development can be observed by repeated GPR scanning over time. Successful GPR-based coarse root investigation is site specific, and only under suitable conditions can reliable measurements be accomplished. The best quality of root detection by GPR is achieved in well-drained and electrically-resistive soils (such as sands) under dry conditions. Numerous factors such as local soil conditions, root electromagnetic properties, and GPR antenna frequency can impact the reliability and accuracy of GPR detection and quantification of coarse roots. As GPR design, data processing software, field data collection protocols, and root parameters estimation methods are continuously improved, this noninvasive technique could offer greater potential to study coarse roots.  相似文献   

18.
How plant inputs from above- versus below-ground affect long term carbon (C) and nitrogen (N) retention and stabilization in soils is not well known. We present results of a decade-long field study that traced the decomposition of 13C- and 15N-labeled Pinus ponderosa needle and fine root litter placed in O or A soil horizons of a sandy Alfisol under a coniferous forest. We measured the retention of litter-derived C and N in particulate (>2 mm) and bulk soil (<2 mm) fractions, as well as in density-separated free light and three mineral-associated fractions. After 10 years, the influence of slower initial mineralization of root litter compared to needle litter was still evident: almost twice as much root litter (44% of C) was retained than needle litter (22–28% of C). After 10 years, the O horizon retained more litter in coarse particulate matter implying the crucial comminution step was slower than in the A horizon, while the A horizon retained more litter in the finer bulk soil, where it was recovered in organo-mineral associations. Retention in these A horizon mineral-associated fractions was similar for roots and needles. Nearly 5% of the applied litter C (and almost 15% of the applied N) was in organo-mineral associations, which had centennial residence times and potential for long-term stabilization. Vertical movement of litter-derived C was minimal after a decade, but N was significantly more mobile. Overall, the legacy of initial litter quality influences total SOM retention; however, the potential for and mechanisms of long-term SOM stabilization are influenced not by litter type but by soil horizon.  相似文献   

19.
川滇高山栎灌丛萌生过程中的营养元素供应动态   总被引:4,自引:0,他引:4       下载免费PDF全文
萌生更新是森林更新的重要方式, 是硬叶栎林受到干扰后植被恢复的主要机制。以位于青藏高原东南缘的川西折多山东坡川滇高山栎(Quercus aquifoliodes)灌丛为研究对象, 调查分析了砍伐后灌丛萌生过程中基株根系和萌株生物量动态、营养元素含量, 以及基株根系和土壤对萌株生长过程中的营养元素供应动态。结果表明, 川滇高山栎灌丛平均地上和地下生物量分别为(11.25 ± 0.92) t·hm-2和(34.85 ± 2.02) t·hm-2, 具有较大的根冠比(3.10:1); 萌生过程中, 萌株生物量呈线性增加趋势, 以灌丛活细根生物量变化为最大, 其次是活中根和活粗根, 树桩和根蔸生物量变化最小; 萌生过程中, 灌丛细根和中根N、P含量表现为先增加、后降低的变化趋势, 萌生初期树桩、粗根和根蔸中N和K的含量明显下降, 根蔸中Ca含量略有下降, 而P没有明显下降, 根系Mg含量变化幅度较大, 灌丛地下根系储存了较多的营养元素; 土壤、树桩、粗根和根蔸是川滇高山栎灌丛砍伐后0-120天萌生生长的主要营养来源, 砍伐后60天, 萌株生长所需的营养除K元素主要来源于根系外, 其余营养元素主要来源于土壤; 在砍伐后60-120天, 基株根系对萌株生长所需的N、K和Ca贡献较大, 而对P和Mg的贡献较小; 在砍伐后120-180天, 根系除K元素对萌生生长还保持较大的贡献外, 对其余营养元素的贡献均较小。高山栎林管理要注重加强地下根系的保护。  相似文献   

20.

Aim

We studied the vertical and lateral root distribution of tree species from three genera (Populus spp. - poplar, Picea spp. - spruce, Salix spp. - willow) that were planted in temperate windbreaks and assessed the effects of soil texture on root density.

Methods

Root distribution to depths of up to 1 m was assessed using the trench-profile method at different distances from the tree rows (2, 6 and 9 m) in 18 mature (average age, 25 years-old) windbreak-sites that were located on light- or heavy-textured agricultural soils in southeastern Québec, Canada. Roots were classified into three diameter classes: fine (<1 mm), medium-size (1–5 mm), and coarse (>5 mm).

Results

Tree fine-root density in poplar and willow windbreaks was higher than in spruce windbreaks at 2 m from the tree row. Root densities were higher in light compared to heavy soils, but these differences were specific to poplar and spruce. Across species groups and soil types, 67 % of the roots occurred in the uppermost 30 cm. In this soil zone, different soil fertility variables (pH, clay content, CEC) were negatively correlated with root density. Densities of spruce and willow roots at 6 m from the tree row were much lower (and often unobserved) than that of poplar. At 9 m, low root densities were observed at only two sites.

Conclusions

We conclude that tree identity and soil type are important drivers of root distribution in temperate agroforestry systems. These results may have important implications for the management of tree competition in agroforestry systems and several ecosystem services that are provided by roots, including C-sequestration, erosion control and water infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号