首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The study determined linear edge effects on liana and tree community assemblages in moist semi-deciduous (Afram Headwaters Forest Reserve) and upland evergreen (Tano Offin Forest Reserve) forests in Ghana. Fifteen plots (20 × 20 m2) were randomly set up at each habitat in the forests: edge habitat (0–40 m) and interior habitat (≥500 m). Lianas (diameter at 1.30 m from rooting base ≥1 cm) and trees (diameter at breast height, dbh ≥5 cm) were identified and enumerated in the plots. In the forest ecosystems, liana and tree species composition differed significantly between the two habitats. Liana and tree diversity did not differ significantly between edge and interior habitats. Nevertheless, edge habitat in moist semi-deciduous forest supported significantly higher liana abundance and basal area than its interior habitat, whereas edge habitat in upland evergreen forest harboured significantly lower liana basal area than its corresponding interior habitat. Edge habitat in moist semi-deciduous and upland evergreen forests had significantly lower tree abundance and basal area, respectively, than interior habitat. The results suggest that overall, linear edge effects on liana and tree assemblages were more pronounced in moist semi-deciduous forest than upland evergreen forest. Lianas exhibited dominance over trees in edge habitat within moist semi-deciduous forest, implying that they can have serious implications on tree diversity and ecosystem functioning in the forest. As our study is the first of its kind in the tropics with respect to edge type and forest ecosystems studied, our findings can contribute towards edge theory development.  相似文献   

2.
The effects of mixing tree species on tree growth and stand production have been abundantly studied, mostly looking at tree species diversity effects while controlling for stand density and structure. Regarding the shift towards managing forests as complex adaptive systems, we also need insight into the effects of structural diversity. Strict forest reserves, left for spontaneous development, offer unique opportunities for studying the effects of diversity in tree species and stand structure. We used data from repeated inventories in ten forest reserves in the Netherlands and northern Belgium to study the growth of pine and oak. We investigated whether the diversity of a tree's local neighbourhood (i.e., species and structural diversity) is important in explaining its basal area growth. For the subcanopy oak trees, we found a negative effect of the tree species richness of the local neighbours, which – in the studied forests – was closely related to the share of shade-casting tree species in the neighbourhood. The growth of the taller oak trees was positively affected by the height diversity of the neighbour trees. Pine tree growth showed no relation with neighbourhood diversity. Tree growth decreased with neighbourhood density for both species (although no significant relationship was found for the small pines). We found no overall diversity-growth relationship in the studied uneven-aged mature forests; the relationship depended on tree species identity and the aspect of diversity considered (species vs. structural diversity).  相似文献   

3.
Changes in species composition in two 4-ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986-1996) for trees > or = 10 cm girth at breast height (gbh). Each included a lower-slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10-< 50cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi-stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade-off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential growth rate, high light responsiveness and high turnover in the overstorey group, was only partly met, as some understorey species were also very dynamic. The forest at Danum, under such a disturbance-recovery regime, can be viewed as having a dynamic equilibrium in functional and structural terms. A second trade-off in shade-tolerance versus drought-tolerance is suggested for among the understorey species. A two-storey (or vertical component) model is proposed where the understorcy-overstorey species' ratio of small stems (currently 2:1) is maintained by a major feedback process. The understorey appears to be an important part of this forest, giving resilience against drought and protecting the overstorey saplings in the long term. This view could be valuable for understanding forest responses to climate change where drought frequency in Borneo is predicted to intensify in the coming decades.  相似文献   

4.
Studies on tree communities have demonstrated that species diversity can enhance forest productivity, but the driving mechanisms at the local neighbourhood level remain poorly understood. Here, we use data from a large‐scale biodiversity experiment with 24 subtropical tree species to show that neighbourhood tree species richness generally promotes individual tree productivity. We found that the underlying mechanisms depend on a focal tree's functional traits: For species with a conservative resource‐use strategy diversity effects were brought about by facilitation, and for species with acquisitive traits by competitive reduction. Moreover, positive diversity effects were strongest under low competition intensity (quantified as the total basal area of neighbours) for acquisitive species, and under high competition intensity for conservative species. Our findings demonstrate that net biodiversity effects in tree communities can vary over small spatial scales, emphasising the need to consider variation in local neighbourhood interactions to better understand effects at the community level.  相似文献   

5.
Abstract. Changes in horizontal structure and the influence of neighbours on tree vitality were studied in a spruce forest under air pollution stress. Five permanent plots along an altitudinal gradient in the Krkono?e Mts., Czech Republic, were monitored for 18 years. Digitized maps of each plot were used for the analysis: the health of each tree, expressed by the defoliation degree was recorded each year, the biometrical characteristics were measured at five-year intervals. Various indices of neighbourhood competition were used to evaluate the interference with neighbours. The results show that the suppressed trees are most susceptible to other environmental stresses, particularly to the air pollution stress. Similarly, tree damage is more severe in plots near the natural timberline, where the trees are close to their natural environmental limits. The spatial pattern of surviving trees changes towards regularity at a scale of 2–5 m (K-function analysis) when the suppressed trees, usually those with close neighbours, die.  相似文献   

6.
Climbers play different roles in forest biology and ecology and are the first to be eliminated during forest clearing but little is known about the species composition, distribution and relationship with tree species of this group of plants of tropical forest. This study thus investigated the species composition, abundance and tree relationship of climbers along altitudinal gradient in four 0.06 ha plots in a secondary forest at Ile‐Ife, Nigeria. All trees ≥10 cm g.b.h were examined for the presence of climbers in the plots. There were 49 climber species consisting of 35 liana and fourteen vine species distributed over 41 genera and 28 families in the forest. Lianas contributed 34% and vines 13.7% of the plant species in the forest. Climber basal area, density, number of species, genera and families increased with altitude. Forty‐two per cent (42%) of the trees in the forest carried climbers. There was significant positive correlation (P ≤ 0.05) between girth sizes of host trees of 31–50 cm with the girths of climbers on them indicating that trees of these girth sizes are highly susceptible to climber infestation. Tree species host density and size are important factors in determining the presence of climbers on a tree.  相似文献   

7.
F. A. Jones  L. S. Comita 《Oikos》2010,119(11):1841-1847
Negative density‐dependent demographic processes operating at post‐dispersal seed, seedling, and juvenile stages are the dominant explanation for the coexistence of high numbers of tree species in tropical forests. At adult stages, the effect of pollinators and pre‐dispersal fruit predators are often dependent on the density or abundance of flowers and fruit in the canopy, but each have opposite effects on individual realized reproduction. We studied the effect of density on total and mature fruit set and pre‐dispersal predation rates within individual tree canopies in a common canopy tree species, Jacaranda copaia in a 50‐ha forest census plot in central Panama. We sampled all reproductive sized trees in the plot (n = 188) across three years and estimated fruit set and predation rates. Population‐wide pre‐dispersal seed predation averaged between 6–37% across years. Using linear mixed effects models, we found that increased density and fecundity of conspecific neighbours increased focal tree fruit set, but also the rate of pre‐dispersal predation. An interaction between individual and neighbourhood fruit production predicted lower predation rates at high individual and neighbourhood fecundities, which suggests predator satiation at high fruit abundance levels. However, the rate at which fruit set increased with conspecific neighbour fruit production was greater than the rate at which fruit were lost to predation, resulting in an overall positive effect of neighbour density on mature fruit production in focal trees. Our results run counter to the expectation of a uniformly negative effect of density across all life stages in tropical trees and suggest further exploration of the role of spatial clumping, pollen dispersal limitation, and predation at pre‐dispersal adult stages in maintenance of species diversity in plant communities.  相似文献   

8.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

9.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

10.
Hurst JM  Allen RB  Coomes DA  Duncan RP 《PloS one》2011,6(10):e26670
Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech) forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1) patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2) the strength and direction of neighbourhood crowding effects on size-specific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (<20 cm in diameter) were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that size-asymmetric competition for light was a major cause of mortality. In contrast, large trees (≥ 20 cm in diameter) were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.  相似文献   

11.
The floristic composition and structure of a premontane moist forest remnant were studied in the El Rodeo Protected Zone, Central Valley of Costa Rica. Three one-hectare plots were established in the non-disturbed forest, and all trees with a diameter at breast height (dbh) of 10 cm or greater were marked, measured and identified. The plots were located within a radius of 500 m from each other. A total of 106 tree species were recorded in the three plots. Average values: species richness 69.6 species ha-1, abundance 509 individuals ha-1, basal area 36.35 m2 ha-1. Total diversity was 3.54 (Shannon Index, H'), and the species similarity among the plots ranged between S = 0.68 and 0.70 (S?rensen Similarity Index). Most tree species are represented by few individuals (five or less). There is a lack of emergent trees and arborescent palms in the forest canopy. According to the Familial Importance Value, Moraceae, followed by Fabaceae, Lauraceae, and Sapotaceae, largely dominates this forest. Pseudolmedia oxyphillaria (Moraceae) is the dominant species (Importance Value Index), accounting for 25% of all the marked trees in the plots, followed by Clarisia racemosa (Moraceae), Heisteria concinna (Olacaceae), and Brosimum alicastrum (Moraceae). The size class distributions were similar among plots, and in general followed the expected J-inverted shape. Differences in tree abundance, floristic composition, and spatial distribution of some species among the plots suggest heterogeneity of this ecosystem's arborescent vegetation. Moreover, it is an important natural reservoir for the conservation of rare and endangered tree species in a national level. Using these results as a baseline, this study should start a long term monitoring of the structure and composition of this very reduced and fragmented ecosystem.  相似文献   

12.
Studies were undertaken on the floristic composition and stand structure of four 1 hectare plots in the lowland forests of Kurupukari, Guyana. A total of 3897 trees, covering 153 species and 31 plant families were recorded at greater than 5 cm diameter at breast height (dbh). The number of species per hectare ranged from 61 to 84 (>5.0 cm dbh) and 50–71 (>10.0 cm dbh). The total number of trees per hectare varied two-fold between study plots, with 45–50% of the trees within the 5–10 cm size-class. Mean total basal area varied from 32.39–34.63 m2 per 100 m2. The four most dominant plant families represented 43.8% of the total number of trees, while representing only 11.2% of the species. No one plant family dominated in more than one of the four study plots, and all four plots held at least one plant family with more than 20% of the total number of trees. Although 14 tree species were common to all four plots, only 26%–35% of the species were represented by a single tree. Between three and seven species represented 50% of the trees within all size-classes, with species dominance occurring within the highest density plot.These tropical forest types of central Guyana may represent some of the lowest diversity forests in the neotropics, whereby the total number of tree species is relatively limited, typically with six dominant canopy species, but the relative abundance of these species is highly variable between the forest types. Mechanisms influencing the competitive interactions associated with species dominance are discussed in relation to the importance of mycorrhizae and the persistence of species dominance.  相似文献   

13.
Abstract. Patterns of species richness in a managed forest were related to ecological factors at two spatial scales. Local variables within a plot (5 m × 5 m) included 13 soil classes and nine stand classes. Neighbourhood variables were defined within a 25 m radius from the focal plot and were measured using a Neighbourhood Diversity Index (NDI - total diversity of different stand classes) and nine Neighbourhood Scores (NS - relative dominance of a given stand class). 224 species were registered in the survey of which 138 were true forest species. Local parameters (stand and soil class) were weak predictors of total and forest species richness. High total and forest species richness were significantly related to high values of NDI (i.e. heterogeneous neighbourhoods). Regression trees showed that total species richness was best predicted by the amount of roadside habitat in the neighbourhood and NDI. Forest species richness was positively related to NDI and negatively related to the amount of coniferous stands in the neighbourhood.  相似文献   

14.
Ecology Letters (2010) 13: 1503-1514 ABSTRACT: The phylogenetic structure and distribution of functional traits in a community can provide insights into community assembly processes. However, these insights are sensitive to the spatial scale of analysis. Here, we use spatially explicit, neighbourhood models of tree growth and survival for 19 tree species, a highly resolved molecular phylogeny and information on eight functional traits to quantify the relative efficacy of functional similarity and shared ancestry in describing the effects of spatial interactions between tree species on demographic rates. We also assess the congruence of these results with observed phylogenetic and functional structure in the neighbourhoods of live and dead trees. We found strong support for models in which the effects of spatial neighbourhood interactions on tree growth and survival were scaled to species-specific mean functional trait values (e.g., wood specific gravity, leaf succulence and maximum height) but not to phylogenetic distance. The weak phylogenetic signal in functional trait data allowed us to independently interpret the static neighbourhood functional and phylogenetic patterns. We observed greater functional trait similarity in the neighbourhoods of live trees relative to those of dead trees suggesting that environmental filtering is the major force structuring this tree community at this scale while competitive interactions play a lesser role.  相似文献   

15.
The interactive effects of forest disturbance and fragmentation on tropical tree assemblages remain poorly understood. We examined the effects of forest patch and landscape metrics, and levels of forest disturbance on the patterns of floristic composition and abundance of tree functional groups within 21 forest fragments and two continuous forest sites in southern Brazilian Amazonia. Trees were sampled within 60 (10 × 250 m) plots placed in the core areas of the fragments. Tree assemblage composition and abundance were summarized using nonmetric multidimensional scaling (NMDS). Forest patch size explained 36.2 percent and 30 percent of the variance in the proportion of small-seeded softwood and hardwood stems in the 21 forest patches, respectively. Large fragments retained a higher abundance of hardwood tree species whereas small-seeded softwood trees appear to proliferate rapidly in small disturbed fragments. Generalized linear mixed models showed that time since fragmentation had both positive and negative effects on the density of different functional groups of trees and on the ordination axes describing tree abundance. The composition and abundance of different tree genera were also related to time since fragmentation, distance to the nearest edge, and fire severity, despite the recent post-isolation history of the forest patches surveyed. Both the proliferation of fast-growing pioneer trees and the decline of hardwood trees found in our forest plots have profound consequences on the floristic composition, forest dynamics, carbon storage, and nutrient cycling in Amazonian forest fragments.  相似文献   

16.
Coffee agroforestry systems (CAFS) are often considered to be species-rich, potentially contributing to the conservation of indigenous trees. To investigate the conservation capacity of a Kenyan CAFS, all tree species on 62 smallholder coffee farms (covering 39 ha in total) in the Aberdare Mountains of Central Kenya were recorded. In total, 6,642 trees of 59 species were enumerated, with a mean density of 256 trees per ha and a mean species richness of 11.2 species per farm. Indigenous species represented 63 % of the richness but only 31 % of the abundance. For individual farms, as expected, farm size had a positive correlation with tree species richness, but more interestingly there was a negative correlation with tree density. Cluster analysis based on densities of the 18 most important species (defined by an importance value index) revealed two groups of farms: one cluster represented small farms (mean size = 0.4 ha) with high tree species diversity and individual density, particularly of indigenous trees; the other cluster represented large (mean size = 1 ha) and less diverse farms with low tree densities, particularly regarding indigenous species. Tree individuals were unevenly distributed within farms, being more frequent in living fences (38 % of all individuals), the garden zone (20 %) and in coffee plots (18 %). The relative occurrence of indigenous species was also uneven, being greater in living fences and the garden zone. Most adult trees (83 %) were planted, but only 46 % of seedlings were, revealing the active removal of volunteer seedlings by farmers as trees mature. Surveyed coffee farms harboured 20 % of the 135 tree species of the potential natural vegetation for the region, but only 3.6 % of the on-farm tree individuals belonged to the most valuable types of dominant and forest vegetation. Thus, although a source of significant tree cover and heterogeneity at landscape level, the value of these CAFS as circa situm reservoirs of forest tree species is questionable.  相似文献   

17.
Invasions by introduced pests can interact with other disturbances to alter forests and their functions, particularly when a dominant tree species declines. To identify changes after invasion by the insect hemlock woolly adelgid (Adelges tsugae; HWA), coinciding with severe droughts and hurricanes, this study compared tree species composition of eastern hemlock (Tsuga canadensis) forests on 11 plots before (2001) and 15 years after (2016) invasion in the southern Appalachian Mountains, USA. Losses of hemlock trees after HWA invasion were among the highest reported, with a 90% decline in density, 86% decline in basal area, and 100% mortality for individuals ≥ 60 cm in diameter. In contrast to predictions of theoretical models, deciduous tree density declined after HWA invasion, while basal area changed little, at least during the initial 15 years after invasion. Overall, forest density declined by 58%, basal area by 25%, and tree species richness by 8%. Factors additional to HWA likely exacerbating forest decline included: droughts before (1999–2001) and after HWA invasion (2006–2008); tree uprooting from hurricane-stimulated winds in 2004; pest-related declines of deciduous tree species otherwise likely benefitting from hemlock’s demise; death of deciduous trees when large hemlocks fell; and competition from aggressive understory plants including doghobble (Leucothoe fontanesiana), rosebay rhododendron (Rhododendron maximum), and Rubus spp. Models of forest change and ecosystem function should not assume that deciduous trees always increase during the first decades after HWA invasion.  相似文献   

18.
1 MOSAIC, a spatially referenced Markov model was used to show how interactions among trees in a neighbourhood may influence the patch structure of forests. A series of two-species simulations were conducted with neighbourhood strength ranging from neutral (chances of species replacing each other independent of neighbourhood composition) to strong (chance of replacement for each species proportional to neighbourhood composition), and with neighbourhood sizes including 1–50 neighbours.
2 Neighbourhood strength was positively correlated with the degree of patchiness. Very high neighbourhood strength is necessary to form mono-specific patches composed of hundreds of individual trees. Intermediate neighbourhood sizes (5–12 neighbours) led to the most distinct patches where individuals were arranged so that contact between species was minimized.
3 Neighbourhood effects alone are unlikely to lead to large areas (several ha) dominated by one species. However, simulations showed that neighbourhood effects can augment small differences in the environment, resulting in large mono-specific patches.
4 Simulations with 4 and 5 species indicated that groups of species can interact to form spatially distinct communities, starting from a random mixture on a uniform environment. This implies that neighbourhood effects may be responsible for some unexplained variability in studies that attempt to relate environmental parameters to forest composition.
5 Patch structures that develop due to neighbourhood effects are usually not recognized by current vegetation classification schemes or by forest managers, and this lack of recognition could lead to the loss of certain natural spatial structures on forested landscapes.  相似文献   

19.
In the Taita Hills in southern Kenya, remnants of the original Afromontane forest vegetation are restricted to isolated mountain peaks. To assess the level of degradation and the need for forest restoration, we examined how forest plant communities and their indicator species vary between and within remnant patches of cloud forest. We used ordinal abundance data to compare plant communities in eight forest fragments. We also analyzed data on the diversity and abundance of trees in 57 0.1 ha plots to compare tree communities within and between the largest two of these fragments, Ngangao (120 ha) and Mbololo (220 ha). The extant vegetation of the Taita Hills at landscape scale consists of secondary moist montane to intermediate montane forest. There was a high species dissimilarity between fragments (69%). Variation in species composition coincided with an abiotic gradient related to elevation. At plot level, secondary successional species and species of forest edges were most abundant and most frequent. Inferred clusters of plots almost entirely coincided with the two forest fragments. Indicator species associated with forest margins and gaps were more frequent in the smaller of the two forest fragments, while indicators for the larger fragment were more typical for less disturbed moist forest. Abiotic site variability but also different levels of disturbance determine site-specific variants of the montane forest. Conservation efforts should not only focus on maintaining forest quantity (size), but also on forest quality (species composition). Late-successional rainforest species are underrepresented in the woody plant communities of the Taita Hills and assisting restoration of viable populations of cloud forest climax tree species is urgently needed.  相似文献   

20.
Summary This study examines the role of canopy trees in the formation and maintenance of different herb microhabitats in a mixed mesophytic forest stand. Herb abundance and reproductive success were recorded in 54 circular plots under seven species of canopy trees and in 15 circular control plots>2 m from any tree. Soil moisture, soil nutrient levels, litter depth, and light intensity were measured in a subset of these plots. Ordination of plots by both herb relative abundance and by reproductive success of common species indicated that herb assemblages under most canopy tree species were similar to those away from trees. However, herb assemblages under Fagus grandifolia trees differed moderately from the others while plots under Quercus alba trees supported significantly different herb assemblages. Analyses of variance revealed that several herb species occurred at significantly closer mean distance to the base of Q. alba or Fagus trees or at higher densities under these tree species. Soils around Q. alba trees had significantly higher concentrations of calcium and sulfate ions, and higher pH than plots under other tree species and control plots. This correlated closely with Q. alba stemflow which had higher concentrations of calcium and sulfate ions and lower concentrations of hydrogen ions than stemflow from other trees at this site. The slightly lower soil pH near the base of Fagus trees may have been related to the high volumes of stemflow produced by this species. Stepwise regression showed significant correlations between abundances of five common herb species and soil nutrient patterns. Maintenance of spatial heterogeneity in forest floor resources by the presence of different species of canopy trees may therefore be important in the maintenance of diversity in these understory herb communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号