首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
Ellenberg indicator values (EIV) have been widely used to estimate habitat variables from floristic data and to predict vegetation composition based on habitat properties. Geographical Information Systems (GIS) and Digital Elevation Models (DEM) are valuable tools for studying the relationships between topographic and ecological characters of river systems. A 3-meter resolution DEM was derived for a. 3-km-long break section of the Szum River (SE Poland) from a 1:10,000 topographic map. Data on the diversity and ecological requirements of the local vascular flora were obtained while making floristic charts for 32 sections of the river valley (each 200 m long) and physical and chemical soil measurements; next, the data were translated into EIV. The correlations of the primary and secondary topographic attributes of the valley, species richness, and EIV (adapted for the Polish vascular flora) were assessed for all species recognized in each valley section. The total area and proportion of a flat area, mean slope, slope curvature, solar radiation (SRAD), and topographic wetness index (TWI) are the most important factors influencing local flora richness and diversity. The highest correlations were found for three ecological indicators, namely light, soil moisture, and soil organic content. The DEM seems to be useful in determination of correlations between topographic and ecological attributes along a minor river valley.  相似文献   

2.
Soil seed banks offer plants the possibility to disperse through time. This has implications for population and community dynamics, as recognised by ecological and evolutionary theory. In contrast, the conservation and restoration literature often find seed banks to be depauperate, weedy and without much conservation value or restoration potential. One explanation for these contrasting views might lie in a systematic bias in the sampling of seed banks versus established plant communities. We use the species–area relationship as a tool to assess and compare the per‐area species richness and spatial structuring of the diversity of the established plant community versus soil seed banks. To allow this direct comparison we extensively survey the species–area relationship of the vegetation and underlying seed bank of a grassland community across twelve sites spanning regional bioclimatic gradients. We also compile a global dataset of established vegetation and seed banks from published sources. We find that seed banks have consistently higher intercepts and slopes of the relationship, and hence higher diversity at any given spatial scale, than the vegetation both in the field and literature study. This is consistent across habitat types, climate gradients, and biomes. Similarity indices are commonly used to compare vegetation and seed bank, and we find that sampling effort (% of the vegetation area sampled for seed bank) was the strongest predictor of vegetation–seed bank similarity for both the Sørensen (R2 = 0.70) and the Raup–Crick (R2 = 0.25) index. Our study suggests that the perception that seed banks are intrinsically less diverse than established plant communities has been based more on inadequate sampling than on biological reality. Across a range of ecosystems and climatic settings, we find high diversity in seed banks relative to the established community, suggesting potentially important roles of seed banks in population dynamics and diversity maintenance.  相似文献   

3.

There is little information about habitat use pattern of river lapwing in India as well as in Southeast Asia. In this regard, we employed the line transect method to quantify the density of river lapwing concerning vegetation height, water depth and soil penetrability. Scan and focal sampling methodology was adapted to investigate the activities (foraging and roosting) and breeding events. The results showed that invertebrates were abundant at 4 cm of soil penetrability, particularly in open unvegetated river bank (OURB) and open unvegetated river island (OURI) habitat types. River lapwings were significant in short vegetation. They occurred in high density in the vicinity of river water at 5 cm of water depth and 4 cm of soil penetrability in OURB and OURI habitat types. Human activities also influenced the density of river lapwing in different habitat types. Results of GLM analysis revealed that all interactions strongly influenced the density of river lapwings except two interactions, e.g. vegetation height*water depth and vegetation height*soil penetrability. Moreover, we found that river lapwing foraged more frequently in OURB and OURI habitat types while less in vegetated river bank (VRB) and crop fields (CF). Roosting activities were more frequently observed in VRB and CF habitat types. Different breeding events (nest seen, chick seen, alarm calling and territory defence) were primarily seen in OURB and OURI habitat types. Finally, developing greater understanding of the river lapwing could help us to design effective conservation measures for this species.

  相似文献   

4.
Birds are integral to many environmental monitoring schemes. However, there has been little research on the ecological basis of utilizing bird species as indicators of their respective communities and habitats. We used point counts to survey 72 landbird species, 16 of conservation concern, in the Dadia Nature Reserve, Greece, in order to understand the ecology of bird diversity patterns, analyse community composition, identify species characteristic of major vegetation types, and improve long-term management and monitoring protocols. We sampled 36 sites representing 21 vegetation types. Highly heterogeneous sites were the most species rich and rural mosaics (small fields and pastures of low intensity land use, separated by thick hedgerows and tree lines) were twice as rich as intensified crop monocultures. Using multivariate analysis, we found that vegetation cover and height affected the composition of the avifauna. Twenty-one predefined vegetation categories clustered into eight distinct bird habitat types: field crops, rural mosaics, mosaic sites, poplar trees, broadleaved woods, pinewoods, shrubs, and heaths. Ten bird species were highly characteristic of the main bird habitat types in the study area. Our results emphasize the importance of conserving rural mosaics, hedgerows, and openings within forests for landbird conservation in the Mediterranean countryside. We also provide evidence in support of maintaining horizontal heterogeneity at a local scale. Finally, we suggest that monitoring populations of certain indicator bird species can be a cost-effective and efficient way to monitor the state and habitat quality of the entire landbird community, thereby integrating the knowledge of community structure into conservation decision-making.  相似文献   

5.
Ecological indicators of habitat and biodiversity in a Neotropical landscape: multitaxonomic perspective. The use of indicator species to characterize specific ecological areas is of high importance in conservation/restoration biology. The objective of this study was to identify indicator species of diverse taxa that characterize different landscape units, and to better understand how management alters species composition. We identified two ecomosaics, tropical rain forest and the agricultural matrix, each one comprised of four landscape units. The taxonomic groups studied included birds (highly mobile), butterflies (moderately mobile), terrestrial gastropods (less mobile) and trees (sessile). Sampling efficiency for both ecomosaics was > or = 86%. We found 50 mollusks, 74 butterflies, 218 birds and 172 tree species, for a total of 514 species. Using ordination and cluster analysis, we distinguished three habitat types in the landscape: tropical rainforest, secondary vegetation and pastures with scattered trees and live fences. The InVal (> or = 50%) method identified 107 indicator species, including 45 tree species, 38 birds, 14 butterflies and 10 gastropods. Of these, 35 trees, 10 birds, four butterflies and eight gastropods were forest indicators. Additionally, 10, 28, 10 and two species, respectively per group, were characteristic of the agricultural matrix. Our results revealed a pattern of diversity decrease of indicator species along the rainforest-secondary forest-pasture gradient. In the forest, the gastropods Carychium exiguum, Coelocentrum turris, Glyphyalinia aff. indentata y Helicina oweniana were significantly correlated (p < 0.05) with 90% of the other groups of flora and fauna indicator species. These findings suggest that gastropods may be good indicators of forest habitat quality and biodiversity. The secondary vegetation is an intermediate disturbance phase that fosters high diversity in the agricultural matrix. We exemplify a multitaxa approach, including mesofauna, for ecological monitoring of agricultural landscapes.  相似文献   

6.
Indicator species are species that readily reflect some measure of habitat characteristics and have become an increasingly appealing tool in environmental monitoring. Traditionally, habitat conditions were derived based on the presence of specific indicator species, but the absence of indicator species may be just as informative. To evaluate the importance of presence vs. absence of indicator species for characterizing habitats across environmental gradients, we evaluated the interactions of zooplankton and acid-stress in 244 boreal lakes. We adopted the statistical methods proposed by Dufrene and Legendre (1997) to identify presence and absence indicator species to characterize high, intermediate and low acid-stress lake categories. Presence indicator species (identified by the statistical analysis) for highly stressed lakes were not entirely appropriate because further evaluation identified them as ubiquitous generalists. In contrast, absence indicators for highly stressed lakes were more appropriate as these habitat specialists were specifically absent from this category of lakes. On the other hand, presence indicators for the low acid-stress category were largely habitat specialists and therefore appropriate indicators. However there were no presence or absence indicators for lakes at intermediate acid-stress level. Thus the combined use of both presence and absence indicators is recommended to characterize habitats across a stress gradient. To evaluate if the successful application of this combined approach is dependent on a stress gradient, we applied the same analyses to a sub-set of uninfluenced (non-sensitive) lakes representing three different environmental conditions. This approach identified statistically significant presence and absence indicator species for all three different reference conditions. Yet, the absence-based approach was not essential under unstressed conditions, as presence indicator species were habitat specialists for all reference categories. Finally, this study also emphasizes the importance of meaningful ecological traits of species in order to ensure the appropriateness of statistically selected indicator species.  相似文献   

7.
新疆吉木萨尔县蝴蝶群落多样性   总被引:1,自引:0,他引:1  
蝴蝶作为指示生物, 被广泛地应用于生物多样性监测及环境质量评估。探究新疆吉木萨尔县蝴蝶群落多样性, 可为当地蝴蝶多样性的保护及环境监测提供基础数据。本研究采用样线法在新疆吉木萨尔县选取山前荒漠、农田、山地草原、山地森林、亚高山草甸5种不同的生境类型, 对蝴蝶种类和群落多样性进行调查。共记录蝴蝶4,401号, 隶属于7科26属38种。其中蛱蝶科有9属12种, 为优势科; 粉蝶科的个体数最多, 占比55.01%; 绢蝶科、凤蝶科和弄蝶科的种类数和个体数最少, 均为单科种, 是该地区的稀有类群。对不同生境蝴蝶群落多样性和相似度分析比较的结果显示: 5种生境中多样性指数从高到低依次为亚高山草甸、山地森林、山地草原、农田及山前荒漠, 其中山地森林和亚高山草甸的相似性系数较高, 达到0.77, 山前荒漠和山地草原的相似性系数最低, 为0.37。蝴蝶物种数及多样性指数随海拔的增加呈上升趋势。蝴蝶群落随月份发生变化, 蝴蝶种类和数量在5月发生、7月达到峰值。蝶类个体数在3年内呈下降趋势。研究结果表明, 蝴蝶物种的组成和多样性与生境类型具有密切联系, 保护生态环境, 维持该地区植物群落的多样性、降低人为干扰程度是保护蝶类多样性的关键。  相似文献   

8.
Due to advances in spatial modeling and improved availability of digital geodata, traditional mapping of potential natural vegetation (PNV) can be replaced by ecological modeling approaches. We developed a new model to map forest types representing the potential natural forest vegetation in the Bavarian Alps. The TRM model is founded on a three-dimensional system of the ecological gradients temperature (T), soil reaction (R), and soil moisture (M). Within such a “site cube” forest types are defined as homogenous site units that give rise to forest communities with comparable species composition, structure, production and protective functions. The three gradients were modeled using regression algorithms with area-wide, high resolution geodata on climate, relief and soil as predictors and average Ellenberg indicator values for temperature, acidity and moisture of vegetation plots as dependent variables summarizing plant responses to ecological gradients. The resulting predictor-response relationships allowed us to predict gradient positions of each raster cell in the region from geodata layers. The three-dimensional system of gradients was partitioned into 26 forest types, which can be mapped for the whole region. TRM-based units are supplemented by 22 forest types of special sites defined by other ecological factors such as geomorphology, for which individual GIS rules were developed. The application of our model results in an intermediate-scale map of potential natural forest vegetation, which is based on an explicit function of temperature, reaction and moisture and is therefore consistent and repeatable in contrast to traditional PNV maps.  相似文献   

9.
Generally, great efforts are made in measuring features of landfill covers. However, conventional physical or chemical parameters reach their limits in indicating the small scale changes of the habitats. Bio-indication is a proven tool to assess habitat conditions. The advantages of vegetation monitoring are obvious: cheap, easy, and integrating over time and space. Our study displays, how vegetation can indicate landfill cover features by adapting some common evaluation methods. Ellenberg's ecological indicator values were used, but ubiquitous species were excluded from multivariate data analysis of the Ellenberg values. Four groups of habitats were distinguished according to their cover material: (i) loamy substrates; (ii) wet hollows and areas with mature compost; (iii) fresh compost and mechanically biologically treated waste; (iv) slag from municipal solid waste incineration and leachate-influenced areas with fresh untreated waste or sewage sludge. The differences were assessed by ecological indices. The results give a promising impression of the potential vegetation monitoring has in the indication of landfill cover features.  相似文献   

10.
Factors determining the invasibility of different types of anthropogenic vegetation were studied in the Czech Republic. A data set of 3420 vegetation plots recorded between 1945 and 2005, containing 913 species, was used. A set of climatic variables (mean annual temperature and precipitation, together with elevation), propagule pressure (substituted by human population density) and local habitat conditions (substituted by values of CSR life strategies and Ellenberg indicator values of native species) was obtained for each plot. All species were classified as native, archaeophytes (i.e. alien species introduced before 1500), and neophytes (i.e. aliens introduced after 1500) and their relative proportion was calculated for each plot. Regression tree models were used to determine the ecological characteristics of the most invasible man-made habitats in the Czech Republic. The plots contained on average 31.9% archaeophytes and 7.3% neophytes. Correlation between the proportions of archaeophytes and neophytes was positive and significant. Both archaeophytes and neophytes were found predominantly in strongly disturbed habitats with a high nutrient supply located at low elevations in warmer climatic areas of the Czech Republic. Archaeophytes are more influenced by local habitat conditions and preferentially colonize sunny and dry man-made habitats with higher soil reaction. Neophytes have no special preferences for local habitat conditions and their highest proportion was found mainly in disturbed habitats at low elevations. Our results show that for anthropogenic vegetation in the Czech Republic, ecological and habitat characteristics are more important factors for plant invasions than different land use in the surrounding area.  相似文献   

11.
This study investigates the importance of spatial landscape characteristics and habitat management on the condition of calcareous grassland in the North Down Natural Area, Kent UK. We used a digitised map of the study area containing shapefiles of all the habitats including 82 patches of calcareous grassland together with management information for each patch and data on the presence and abundance of a range of calcareous grassland indicator plant species. We defined habitat condition by presence of indicator species and used classification trees to generate models with rules for predicting habitat condition from the landscape spatial characteristics and management information. We also applied the same method to investigate the factors affecting presence or diversity of three ecological groups of positive indicator species and dominance of a negative indicator species. All the models except one showed good classification accuracy and high kappa statistic. Favourable habitat condition was predicted by presence of different types of grazing management, presence of woodland around patches of calcareous grassland and shape complexity. These results indicate that calcareous grassland in favourable condition is management-dependent but also located in less intensively managed landscapes. Unfavourable habitat condition was predicted by threat factors such as lack of management and high incidence of arable or improved grassland around patches of calcareous grassland, indicating nutrient enrichment and habitat degradation. Some of these factors also predicted high diversity of the different ecological species groups. The value of this method for predicting habitat condition and species diversity from baseline ecological data for conservation monitoring at the landscape level is emphasised.  相似文献   

12.
Plant censuses are known to be significantly affected by observers’ biases. In this study, we checked whether the magnitude of observer effects (defined as the % of total variance) varied with quadrat size: we expected the census repeatability (% of the total variance that is not due to measurement errors) to be higher for small quadrats than for larger ones. Variations according to quadrat size of the repeatability of species richness, Simpson equitability and reciprocal diversity indices, Ellenberg indicator values, plant cover and plant frequency were assessed using 359 censuses of vascular plants. These were carried out independently by four professional botanists during spring 2002 on the same 18 forest plots, each comprising one 400-m2 quadrat, four 4-m2 and four 2-m2 quadrats. Time expenditure was controlled for. General Linear Models using random effects only were applied to the ecological indices to estimate variance components and magnitude of the following effects (if possible): plot, quadrat, observer, plant species and two-way interactions. High repeatability was obtained for species richness and Ellenberg indicator values. Species richness and Ellenberg indicator values were generally more accurate but also more biased in large quadrats. Simpson reciprocal diversity and equitability indices were poorly repeatable (especially equitability) probably because plant cover estimates varied widely among observers, irrespective of quadrat size. Grouping small quadrats usually increased the repeatability of the variable considered (e.g. species richness, Simpson diversity, plant cover) but the number of plant species found on those pooled 16 m2 was much lower than if large plots were sampled. We therefore recommend to use large, single quadrats for forest vegetation monitoring.  相似文献   

13.
Abstract. Heracleum mantegazzianum, a tall forb from the western Caucasus invaded several different habitats in the Czech Republic. The relation between invasion success and type of recipient habitat was studied in the Slavkovskù les hilly ridge, Czech Republic. The vegetation of 14 habitat types occurring in an area of ca. 25 km2 was analysed using phytosociological relevés, and the invasion success of Heracleum (in terms of number of localities, area covered and proportion of available area occupied) was recorded separately in each of them. Site conditions were expressed indirectly using Ellenberg indicator values. The hypothesis tested was that Heracleum spreads in the majority of vegetation types regardless of the properties of the recipient vegetation. Community invasibility appeared to be affected by site conditions and the composition of the recipient vegetation. The species is not found in acidic habitats. Disturbed habitats with good possibilities of dispersal for Heracleum seeds are more easily invaded. Communities with a higher proportion of phanerophytes and of species with CS (Competitive/Stresstolerating) strategy were more resistant to invasion. The invasion success was bigger in sites with increased possibilities of spread for Heracleum diaspores. Communities invaded by Heracleum had a lower species diversity and a higher indicator value for nitrogen than not-invaded stands. It appears that species contributing to community resistance against invasion of Heracleum, or capable of persisting in Heracleum-invaded stands, have similar ecological requirements but a different life strategy to the invader.  相似文献   

14.
Ecological theory and biodiversity conservation have traditionally relied on the number of species recorded at a site, but it is agreed that site richness represents only a portion of the species that can inhabit particular ecological conditions, that is, the habitat‐specific species pool. Knowledge of the species pool at different sites enables meaningful comparisons of biodiversity and provides insights into processes of biodiversity formation. Empirical studies, however, are limited due to conceptual and methodological difficulties in determining both the size and composition of the absent part of species pools, the so‐called dark diversity. We used >50,000 vegetation plots from 18 types of habitats throughout the Czech Republic, most of which served as a training dataset and 1083 as a subset of test sites. These data were used to compare predicted results from three quantitative methods with those of previously published expert estimates based on species habitat preferences: (1) species co‐occurrence based on Beals' smoothing approach; (2) species ecological requirements, with envelopes around community mean Ellenberg values; and (3) species distribution models, using species environmental niches modeled by Biomod software. Dark diversity estimates were compared at both plot and habitat levels, and each method was applied in different configurations. While there were some differences in the results obtained by different methods, particularly at the plot level, there was a clear convergence, especially at the habitat level. The better convergence at the habitat level reflects less variation in local environmental conditions, whereas variation at the plot level is an effect of each particular method. The co‐occurrence agreed closest the expert estimate, followed by the method based on species ecological requirements. We conclude that several analytical methods can estimate species pools of given habitats. However, the strengths and weaknesses of different methods need attention, especially when dark diversity is estimated at the plot level.  相似文献   

15.
In the face of the current changes in land use and climate as well as habitat destruction, it is important to study herbaceous vegetation as an indicator of changes occurring in savanna ecosystems. We investigated the effects of climate, land use and habitat, both alone and in combination, on the diversity and occurrence of West African savanna herbaceous plant communities. Floristic data and environmental variables were sampled in Burkina Faso and subjected to ordination and indicator species analysis to explore the variation in nine vegetation types. Regression analyses showed that climate, land use, humidity gradient, soil fraction and vegetation structure discriminate herbaceous plant communities. Climate, habitat and their interaction had the greatest effect on the occurrence of these communities. Changes in species richness of the studied communities were mainly due to climate, land use and their interaction, which were more important for increasing rather than decreasing diversity. In all cases, climate conditions remained the most important environmental factor driving vegetation variation in West African savannas. Beside this, the effects of habitat degradation in interaction with land use and climatic conditions indicate land use to be a threat for the diversity of the herbaceous vegetation.  相似文献   

16.
17.
Changes in traditional agricultural systems in Europe in recent decades have led to widespread abandonment and colonization of various habitats by shrubs and trees. We combined several vegetation databases to test whether patterns of changes in plant diversity after land abandonment in different habitats followed similar pathways. The impacts of land abandonment and subsequent woody colonization on vegetation composition and plant traits were studied in five semi-natural open habitats and two arable habitats in six regions of Europe. For each habitat, vegetation surveys were carried out in different stages of succession using either permanent or non-permanent plots. Consecutive stages of succession were defined on a physiognomic basis from initial open stages to late woody stages. Changes in vegetation composition, species richness, numbers of species on Red Lists, plant strategy types, Ellenberg indicator values of the vegetation, Grime CSR strategy types and seven ecological traits were assessed for each stage of the successional pathway. Abandonment of agro-pastoral land-use and subsequent woody colonization were associated with changes in floristic composition. Plant richness varied according to the different habitats and stages of succession, but semi-natural habitats differed from arable fields in several ecological traits and vegetation responses. Nevertheless, succession occurred along broadly predictable pathways. Vegetation in abandoned arable fields was characterized by a decreasing importance of R-strategists, annuals, seed plants with overwintering green leaves, insect-pollinated plants with hemi-rosette morphology and plants thriving in nutrient-rich conditions, but an increase in species considered as endangered according to the Red Lists. Conversely, changes in plant traits with succession within the initially-open semi-natural habitats showed an increase in plants thriving in nutrient-rich conditions, stress-tolerant plants and plants with sexual and vegetative reproduction, but a sharp decrease in protected species. In conclusion, our study showed a set of similarities in responses of the vegetation in plant traits after land abandonment, but we also highlighted differences between arable fields and semi-natural habitats, emphasizing the importance of land-use legacy.  相似文献   

18.
Abstract. Ellenberg indicator values for moisture, nitrogen and soil reaction were correlated with measured soil and vegetation parameters. Relationships were studied through between‐species and between‐site comparisons, using data from 74 roadside plots in 14 different plant communities in The Netherlands forming a wide range. Ellenberg moisture values correlated best with the average lowest moisture contents in summer. Correlations with the annual average groundwater level and the average spring level were also good. Ellenberg N‐values appeared to be only weakly correlated with soil parameters, including N‐mineralization and available mineral N. Instead, there was a strong relation with biomass production. We therefore endorse Hill & Carey's (1997) suggestion that the term N‐values be replaced by ‘productivity values'. For soil reaction, many species values appeared to need regional adjustment. The relationship with soil pH was unsatisfactory; mean indicator values were similar for all sites at pH > 4.75 because of wide species tolerances for intermediate pH levels. Site mean reaction values correlated best (r up to 0.92) with the total amount of calcium (exchangeable Ca2+ plus Ca from carbonates). It is therefore suggested that reaction values are better referred to as ‘calcium values'. Using abundance values as weights when calculating mean indicator values generally improved the results, but, over the wide range of conditions studied, differences were small. Indicator values for bryophytes appeared well in line with those for vascular plants. It was noted that the frequency distributions of indicator values are quite uneven. This creates a tendency for site mean values to converge to the value most common in the regional species pool. Although the effect on overall correlations is small, relationships tended to be less linear. Uneven distributions also cause the site mean indicator values at which species have their optimum to deviate from the actual Ellenberg values of these species. Suggestions for improvements are made. It is concluded that the Ellenberg indicator system provides a very valuable tool for habitat calibration, provided the appropriate parameters are considered.  相似文献   

19.
随着气候变化加剧和人类活动影响,生物多样性变化及其保护逐渐受到广泛关注。蝴蝶作为开花植物的传粉媒介和生态环境监测及评价的关键指示者,其多样性变化能够在一定程度上反映生境状况,因此,有必要清晰认识不同生境中的蝴蝶多样性变化。为明确松嫩平原蝴蝶资源和不同生境的群落多样性差异,采用样线法于2016年5月-2018年8月对松嫩平原的割草草地、湿地、农田、放牧利用草地及恢复草地共五种生境类型进行调查研究。结果发现,调查共记录蝴蝶5108头,隶属于6科21属26种,其中牧女珍眼蝶(Coenonympha amaryllis)和红珠灰蝶(Plebejus argyrognomon)为优势种类,分别占蝴蝶个体总数的25.61%和31.66%,且在五种生境类型中均有分布。不同生境类型中,蝴蝶群落的物种丰富度指数和均匀度指数无明显差异,而恢复草地生境的蝴蝶群落Shannon-Wiener多样性指数较高,优势度指数较低。农田生境中的蝴蝶个体数量较少,且群落组成与其他四种生境之间均具有显著差异。五种生境类型中的蝴蝶数量和多样性均呈现一定的月动态和年动态变化趋势。除湿地和农田外,其余三种生境中蝴蝶物种和个体数量从5月到8月均持续升高。四种生境的蝴蝶物种数量、个体数量(除农田外)在2018年均出现明显下降趋势。物种丰富度指数等指标的月动态和年动态在不同生境类型间存在较大差异。这些结果表明,生境类型和人类活动与蝴蝶多样性变化关系密切,表现为单一生境中蝴蝶多样性较低,复杂生境有利于保护蝴蝶多样性。本研究有助于厘清松嫩平原蝴蝶资源的基础数据,并为该地区蝴蝶多样性保护和利用及评估该区域生态环境提供一定理论支撑。  相似文献   

20.
东苕溪中下游河岸类型对鱼类多样性的影响   总被引:2,自引:0,他引:2  
河流修复工程被美国《科学》杂志列入2000年最具发展潜力的六大领域之一,河流修复工程对水生生态系统的影响也成为各国科学家的研究热点。本文以东苕溪中下游河段为对象,研究4种不同河岸类型(自然河岸 水生植物(A)、自然河岸 无水生植物(B)、人工河岸 水生植物(C)、人工河岸 无水生植物(D))对鱼类生物多样性的影响。本次调查共采集鱼类标本499尾,经鉴定为32种,隶属于7目10科24属。鱼类生物多样性结果显示A、B的物种丰度和Shannon-Wiener指数与D存在显著差异(P<0.05); A的优势度指数与D存在显著性差异(P<0.05); A、C的均匀度与D存在显著性差异。鱼类群落NMDS排序与相似性分析(ANOSIM)显示D与A、B、C能完全分开,且D与A、C存在显著性差异(P<0.05),其中A与C存在显著性差异。因此,河流修复工程中水生植被的恢复对于水生生物多样性的维持至关重要,且恢复水生植被的河流修复工程会减少该工程对鱼类群落结构和生物多样的负面影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号