首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Experimental methods in lichenology are summarized, the most attention being paid to the synthetic and cultural methods. Synthetic methods are based on the several stages: induction of dissociation of the natural lichen thallus to the monocultures of symbionts, culturing of these symbionts, and subsequent resynthesis under controlled conditions. Synthesis of the model association is based on monocultures of one of the symbionts and free-living organisms. These methods allow studying specificity and selectivity of interactions among symbionts, morphogenesis of the lichen thallus, and the role of minor components of the symbiotic system. Cultural methods involve development of dedifferentiated cell aggregates of lichen thallus ("lichen tissue cultures") on the solid and liquid media. At present, the methods of maintenance of lichen tissue cultures on the solid medium are worked out only. However, the lichen tissue cultures on the liquid medium are much more interesting because this method can be introduced in biotechnology. Cultural methods allow to achieve lichen biomass that contain specific lichen compounds. Induction of morphogenesis in lichen tissue cultures is possible.  相似文献   

2.
Lichens are symbiotic associations between fungi and a photosynthetic alga and/or cyanobacteria. Lichenized fungi have been found to produce a wide array of secondary metabolites, most of which are unique to the lichenized condition. These secondary metabolites have shown an impressive range of biological activities including antibiotics, antifungal, anti-HIV, anticancer, anti-protozoan, etc. This review focuses primarily on the antibiotic and anticancer properties of lichen secondary chemicals. We have reviewed various publications related to antibiotic and anticancer drug therapies emphasizing results about specific lichens and/or lichen compounds, which microbes or cancer cells were involved and the main findings of each study. We found that crude lichen extracts and various isolated lichen compounds often demonstrate significant inhibitory activity against various pathogenic bacteria and cancer cell lines at very low concentrations. There were no studies examining the specific mechanism of action against pathogenic bacteria; however, we did find a limited number of studies where the mechanism of action against cancer cell lines had been explored. The molecular mechanism of cell death by lichen compounds includes cell cycle arrest, apoptosis, necrosis, and inhibition of angiogenesis. Although lichens are a reservoir for various biologically active compounds, only a limited number have been tested for their biological significance. There is clearly an urgent need for expanding research in this area of study, including in depth studies of those compounds which have shown promising results as well as a strong focus on identifying specific mechanisms of action and extensive clinical trials using the most promising lichen based drug therapies followed by large scale production of the best of those compounds.  相似文献   

3.
Large, architecturally complex lichen symbioses arose only a few times in evolution, increasing thallus size by orders of magnitude over those from which they evolved. The innovations that enabled symbiotic assemblages to acquire and maintain large sizes are unknown. We mapped morphometric data against an eight‐locus fungal phylogeny across one of the best‐sampled thallus size transition events, the origins of the Placopsis lichen symbiosis, and used a phylogenetic comparative framework to explore the role of nitrogen‐fixing cyanobacteria in size differences. Thallus thickness increased by >150% and fruiting body core volume increased ninefold on average after acquisition of cyanobacteria. Volume of cyanobacteria‐containing structures (cephalodia), once acquired, correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed‐effects analyses. Our results suggest that the availability of nitrogen is an important factor in the formation of large thalli. Cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as acidic, rain‐washed rock surfaces. In the case of the Placopsis fungal symbiont, this has led to an adaptive radiation of more than 60 recognized species from related crustose members of the genus Trapelia. Our data suggest that precyanobacterial symbiotic lineages were constrained to forming a narrow range of phenotypes, so‐called cryptic species, leading systematists until now to recognize only six of the 13 species clusters we identified in Trapelia.  相似文献   

4.
It is proposed that lichen photobionts, compared to mycobionts, have very limited capacity to evolve adaptations to lichenization, so that the symbionts in lichens do not co-evolve. This is because lichens have (a) no sequential selection of photobiont cells from one lichen into another needed for Darwinian natural selection and (b) no photobiont sexual reproduction in the thallus. Molecular studies of lichen photobionts indicate no predictable patterns of photobiont lineages that occur in lichens so supporting this proposal. Any adaptation by photobionts accumulating beneficial mutations for lichenization is probably insignificant compared to the rate of mycobiont adaptation. This proposal poses questions for research relating the photobiont sexual cycle (genetic and cellular), the fate of photobiont lineages after lichenization, whether lineages of photobionts in thalli change with time, thallus formation by from spores as well as carbohydrate movement from photobionts to mycobionts and regulation of co-development of the symbionts in the thallus.  相似文献   

5.
A structural characterization of polysaccharides extracted from the aposymbiotically cultured photobiont of the lichen Ramalina gracilis was carried out in order to compare them with those previously found in the symbiotic thallus. The photobiont was isolated from thallus fragments, following the method of Yamamoto, and cultivated in a liquid nutrient medium. Freeze-dried cells were defatted, and the polysaccharides extracted successively with water and aq. 10% KOH, each at 100 degrees C. After purification, the soluble fractions provided a polysaccharide containing a (1-->5)-linked beta-galactofuranosyl backbone, substituted in a small proportion at O-6 by beta-Galf units. Amylose was also found, as insoluble material obtained on freeze-thawing of the alkaline extract. These polysaccharides have not been found in the symbiotic thallus of Ramalina gracilis, which contained only water-soluble (isolichenan) and insoluble glucans (nigeran and laminaran), and galactomannan. Surprisingly, the galactofuranan has similarities with those found in some fungal cell walls.  相似文献   

6.
7.
Lichen is a symbiotic mutualism of mycobiont and photobiont that harbors diverse organisms including endolichenic fungi (ELF). Despite the taxonomic and ecological significance of ELF, no comparative investigation of an ELF community involving isolation of a pure culture and high-throughput sequencing has been conducted. Thus, we analyzed the ELF community in Parmotrema tinctorum by culture and metabarcoding. Alpha diversity of the ELF community was notably greater in metabarcoding than in culture-based analysis. Taxonomic proportions of the ELF community estimated by metabarcoding and by culture analyses showed remarkable differences: Sordariomycetes was the most dominant fungal class in culture-based analysis, while Dothideomycetes was the most abundant in metabarcoding analysis. Thirty-seven operational taxonomic units (OTUs) were commonly observed by culture- and metabarcoding-based analyses but relative abundances differed: most of common OTUs were underrepresented in metabarcoding. The ELF community differed in lichen segments and thalli in metabarcoding analysis. Dissimilarity of ELF community intra lichen thallus increased with thallus segment distance; inter-thallus ELF community dissimilarity was significantly greater than intra-thallus ELF community dissimilarity. Finally, we tested how many fungal sequence reads would be needed to ELF diversity with relationship assays between numbers of lichen segments and saturation patterns of OTU richness and sample coverage. At least 6000 sequence reads per lichen thallus were sufficient for prediction of overall ELF community diversity and 50,000 reads per thallus were enough to observe rare taxa of ELF.  相似文献   

8.
Lichens as symbiotic associations consisting of a fungus (the mycobiont) and a photosynthetic partner (the photobiont) dominate the terrestrial vegetation of continental Antarctica. The photobiont provides carbon nutrition for the fungus. Therefore, performance and protection of photosystem II is a key factor of lichen survival. Potentials and limitations of photobiont physiology require intense investigation to extend the knowledge on adaptation mechanisms in the lichen symbiosis and to clarify to which extent photobionts benefit from symbiosis. Isolated photobionts and entire lichen thalli have been examined. The contribution of the photobiont concerning adaptation mechanisms to the light regime and temperature conditions was examined by chlorophyll a fluorescence and pigment analysis focusing on the foliose lichen Umbilicaria decussata from North Victoria Land, continental Antarctica. No photoinhibition has been observed in the entire lichen thallus. In the isolated photobionts, photoinhibition was clearly temperature dependent. For the first time, melanin in U. decussata thalli has been proved. Though the isolated photobiont is capable of excess light protection, the results clearly show that photoprotection is significantly increased in the symbiotic state. The closely related photobiont of Pleopsidium chlorophanum, a lichen lacking melanin, showed a higher potential of carotenoid-based excess light tolerance. This fact discriminates the two photobionts of the same Trebouxia clade. Based on the results, it can be concluded that the successful adaptation of lichens to continental Antarctic conditions is in part based on the physiological potential of the photobionts. The findings provide information on the success of symbiotic life in extreme environments.  相似文献   

9.
The investigation of fungal–bacterial interactions is an emerging field of research applying tools of modern microbial ecology. Studies have previously focused on the mycorrhizosphere, but in past decade, the role of bacteria in other fungal niches has been increasingly evaluated. This review presents recent progress in the understanding of fungal–bacterial interactions and contains a special focus on lichen symbioses. Lichens are traditionally considered as mutualisms between fungi and photoautotrophic species, but recent molecular approaches have revealed that lichens also harbour diverse microbial communities. Using modern DNA/RNA-based and microscopic techniques (e.g. FISH and confocal laser scanning microscopy) we are now able to analyse the abundance, composition, and structure of microbial communities in the lichen holobiont. Lichen-associated microbial communities consist of diverse taxonomic groups; the majority of bacteria belong to Alphaproteobacteria. Microbial communities can form biofilm-like structures on specific parts of the lichen thallus. Until now, the function and interaction within the microbial consortia is not fully understood. The functions displayed mainly by culturable strains suggest that bacteria have lytic activities, complement the nitrogen budget and produce bioactive substances, including hormones and antibiotics. Bacterial contribution to the lichen symbiosis is perhaps not restricted to one particular function in the lichen system, but supports a complex functional network which remains to be studied in greater detail.  相似文献   

10.
A structural study of the carbohydrates from the aposymbiotically cultured Asterochloris sp., the algal symbiont of the lichen Cladina confusa was carried out for the first time. A xylorhamnogalactofuranan was purified and was predominated by (1-->3)-linked galactofuranosyl units with sidechains in position 6 on approximately 6.4% of the units. The sidechains have galactofuranosyl units 5-O and 6-O-substituted, as well rhamnopyranosyl units 2-O, 3-O and 2,3-di-O-substituted. Xylose was detected only as nonreducing end units, together with galactofuranosyl units. Amylose and a beta-(1-->4)-xylan were also present. These polysaccharides have not been found in the symbiotic thallus of C. confusa, which contained only glucans, galactomannoglucan and galactoglucomannan. A potential role of these carbohydrates in lichen recognition proccess is also discussed.  相似文献   

11.
Ramalina farinacea is an epiphytic fruticose lichen that is relatively abundant in areas with Mediterranean, subtropical or temperate climates. Little is known about photobiont diversity in different lichen populations. The present study examines the phycobiont composition of several geographically distant populations of R. farinacea from the Iberian Peninsula, Canary Islands and California as well as the physiological performance of isolated phycobionts. Based on anatomical observations and molecular analyses, the coexistence of two different taxa of Trebouxia (working names, TR1 and TR9) was determined within each thallus of R. farinacea in all of the analysed populations. Examination of the effects of temperature and light on growth and photosynthesis indicated a superior performance of TR9 under relatively high temperatures and irradiances while TR1 thrived at moderate temperature and irradiance. Ramalina farinacea thalli apparently represent a specific and selective form of symbiotic association involving the same two Trebouxia phycobionts. Strict preservation of this pattern of algal coexistence is likely favoured by the different and probably complementary ecophysiological responses of each phycobiont, thus facilitating the proliferation of this lichen in a wide range of habitats and geographic areas.  相似文献   

12.
The diversity and phylogenetic position of photobionts in the widespread saxicolous, crustose lichen-forming ascomycete Lecanora rupicola s.l. is presented. The algal partners of this lichen species complex belong to diverse and unrelated lineages in the genus Trebouxia . Specimens were sampled from different habitats and geographical origins. Either whole thallus DNA extractions or minute fragments of the algal layer of the lichen thallus were subjected to polymerase chain reaction, using primers that specifically amplify internal transcribed spacer rDNA of the photobionts. No correlations between different chemical races of L. rupicola with particular lineages of Trebouxia spp. were found. Irrespective of the different algal partners, all lichen thalli abundantly developed ascomata. L. rupicola apparently maintains full fecundity with a low degree of selectivity for photobionts, which promotes the occurrence of this lichen-forming species in ample ecological situations.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 283–293.  相似文献   

13.
Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli. For this study, comparative analyses were conducted on lichen-associated bacterial communities to test for effects of photobiont-types (i.e. green algal vs. cyanobacterial), mycobiont-types and large-scale spatial distances (from tropical to arctic latitudes). Amplicons of the 16S (SSU) rRNA gene were examined using both Sanger sequencing of cloned fragments and barcoded pyrosequencing. Rhizobiales is typically the most abundant and taxonomically diverse order in lichen microbiomes; however, overall bacterial diversity in lichens is shown to be much higher than previously reported. Members of Acidobacteriaceae, Acetobacteraceae, Brucellaceae and sequence group LAR1 are the most commonly found groups across the phylogenetically and geographically broad array of lichens examined here. Major bacterial community trends are significantly correlated with differences in large-scale geography, photobiont-type and mycobiont-type. The lichen as a microcosm represents a structured, unique microbial habitat with greater ecological complexity and bacterial diversity than previously appreciated and can serve as a model system for studying larger ecological and evolutionary principles.  相似文献   

14.
Lichens are symbiotic associations of fungi and algae (or cyanobacteria). Fungal cells produce large amounts of lipid, assisted by algae, and secrete them out of the cells. Some of the secreted lipids crystallize in the thallus of the lichen. The crystalline materials sometimes occupy 30% of total dry weight of the thallus. This unusual amount of lipid crystal led to our interest in investigating the mechanism of lipid secretion. To begin the cell biological study of lipid secretion and to know the significance of the existence of such crystals in the thallus, it is essential to identify the crystal. The lipid crystal extracted from the thallus of a lichen, Myelochroa leucotyliza, was studied by EM observations, TLC analysis, and EM and X-ray diffraction methods. Atranorin is the predominant component of the crystalline materials in the lipids extracted.  相似文献   

15.
The main α-glucan synthesized by lichens of the genera Ramalina in the symbiotic state is isolichenan. This polysaccharide was not found in the aposymbiotically cultivated symbionts. It is still unknown if this glucan is produced by the mycobiont only in the presence of a photobiont, in a lichen thallus, or if the isolichenan suppression is influenced by the composition of culture medium used in its aposymbiotic cultive. Consequently, the latter hypothesis is tested in this study. Cultures of the mycobiont Ramalina complanata were obtained from germinated ascospores and cultivated on 4% glucose Lilly and Barnett medium. Freeze-dried colonies were defatted and their carbohydrates extracted successively with hot water and aqueous 10% KOH, each at 100 °C. The polysaccharides nigeran, laminaran and galactomannan were liberated, along with a lentinan-type β-glucan and a heteropolysaccharide (Man : Gal : Glc, 21 : 28 : 51). Nevertheless, the α-glucan isolichenan was not found in the extracts. It follows that it was probably a symbiotic product, synthesized by the mycobiont only in this particular microenvironment, in the presence of the photobiont in the lichen thallus. A discussion about polysaccharides found in the symbiotic thallus as well as in other aposymbiotic cultivated Ramalina mycobionts is also included.  相似文献   

16.
Abstract In analyses of free amino acids in the lichen Peltigera praetextata high levels of sarcosine ( N -methylglycine) were found.
Sarcosine was found to stimulate nitrogenase activity of the cyanobiont Nostoc , isolated from Peltigera canina . This stimulation was optimal at 1 mM sarcosine, a concentration which is close to that calculated as being present in a water-saturated lichen thallus. Sarcosine also was found to inhibit the activity of glutamine synthetase in Nostoc . This inhibitory effect may account for the stimulation of nitrogenase activity and may be important in the symbiotic regulation of cyanophilic lichens.  相似文献   

17.
This study uses a set of PCR-based methods to examine the putative microbiota associated with lichen thalli. In initial experiments, generalized oligonucleotide-primers for the 16S rRNA gene resulted in amplicon pools populated almost exclusively with fragments derived from lichen photobionts (i.e., Cyanobacteria or chloroplasts of algae). This effectively masked the presence of other lichen-associated prokaryotes. In order to facilitate the study of the lichen microbiota, 16S ribosomal oligonucleotide-primers were developed to target Bacteria, but exclude sequences derived from chloroplasts and Cyanobacteria. A preliminary microbiotic survey of lichen thalli using these new primers has revealed the identity of several bacterial associates, including representatives of the extremophilic Acidobacteria, bacteria in the families Acetobacteraceae and Brucellaceae, strains belonging to the genus Methylobacterium, and members of an undescribed lineage in the Rhizobiales. This new lineage was investigated and characterized through molecular cloning, and was found to be present in all examined lichens that are associated with green algae. There is evidence to suggest that members of this lineage may both account for a large proportion of the lichen-associated bacterial community and assist in providing the lichen thallus with crucial nutrients such as fixed nitrogen.  相似文献   

18.
Symbioses represent a frequent and successful lifestyle on earth and lichens are one of their classic examples. Recently, bacterial communities were identified as stable, specific and structurally integrated partners of the lichen symbiosis, but their role has remained largely elusive in comparison to the well-known functions of the fungal and algal partners. We have explored the metabolic potentials of the microbiome using the lung lichen Lobaria pulmonaria as the model. Metagenomic and proteomic data were comparatively assessed and visualized by Voronoi treemaps. The study was complemented with molecular, microscopic and physiological assays. We have found that more than 800 bacterial species have the ability to contribute multiple aspects to the symbiotic system, including essential functions such as (i) nutrient supply, especially nitrogen, phosphorous and sulfur, (ii) resistance against biotic stress factors (that is, pathogen defense), (iii) resistance against abiotic factors, (iv) support of photosynthesis by provision of vitamin B12, (v) fungal and algal growth support by provision of hormones, (vi) detoxification of metabolites, and (vii) degradation of older parts of the lichen thallus. Our findings showed the potential of lichen-associated bacteria to interact with the fungal as well as algal partner to support health, growth and fitness of their hosts. We developed a model of the symbiosis depicting the functional multi-player network of the participants, and argue that the strategy of functional diversification in lichens supports the longevity and persistence of lichens under extreme and changing ecological conditions.  相似文献   

19.
Lichen-forming fungi have been assumed to be more or less restricted to the surface of the substrate on which they grow, Conclusive identification of hyphae or an assessment of the fungal diversity inside lichen-covered rock has not been possible using methods based on direct observation. We circumvented this problem by using a DNA sequencing approach. Cores were drilled from a Devonian arcosic sandstone rock harboring the crustose lichen Ophioparma ventosa (L.) Norman on the surface. The cores were cut vertically, and DNA was extracted from the pulverized rock slices. A series of polymerase chain reactions using fungal-specific primers as well as Ophioparma ventosa specific primers were employed to amplify the internal transcribed spacer region of the nuclear ribosomal DNA. The results show that hyphae of O. ventosa penetrate approximately 10–12 mm into the rock. Consequently, the hyphal layer formed by the lichen fungus inside the rock could be 7–12 times as thick as the symbiotic thallus at the surface of the rock. In addition, eight non-lichenized fungal taxa and five that could not be identified to species were encountered. One fungal species in the order Helotiales occurs in six of the eight cores. The significance of these results to the colonization and weathering of rock by lichenized fungi is discussed.  相似文献   

20.
Immobilized lichen cells from the thalli of the lichen Pseudevernia furfuracea, supplied with acetate as the only source of carbon, continuously produced phenolic substances, atranorin and physodic acid, over 23 days. Epiphytic bacteria associated with the lichen thallus grew actively, probably using both acetate and reduced compounds supplied by lichen cells, since their active growth was avoided by including 10 microM 3,3'-dichlorophenyl-1,1'dimethylurea in the bath solution. Penicillin largely impeded the growth of epiphytic bacteria and decreased phenolic production, which was recovered only at the end of the experimental period, just when the bacteria started a slow, but active growth. We suggest the cooperation of epiphytic bacteria in the biosynthesis of both atranotrin and physodic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号