首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: What precision and accuracy of visual cover estimations can be achieved after repeated calibration with images of vegetation in which the true cover is known, and what factors influence the results? Methods: Digital images were created, in which the true cover of vegetation was digitally calculated. Fifteen observers made repeated estimates with immediate feedback on the true cover. The effects on precision and accuracy through time were evaluated with repeated proficiency tests. In a field trial, cover estimates, before and after calibration, were compared with point frequency data. Results: Even a short time of calibration greatly improves precision and accuracy of the estimates, and can also reduce the influence of different backgrounds, aggregation patterns and experience. Experienced observers had a stronger tendency to underestimate the cover of narrow‐leaved grasses before calibration. The field trial showed positive effects of computer‐based calibration on precision, in that it led to considerably less between‐observer variation for one of the two species groups. Conclusions: Computer‐aided calibration of vegetation cover estimation is simple, self‐explanatory and time‐efficient, and might possibly reduce biases and drifts in estimate levels over time. Such calibration can also reduce between‐observer variation in field estimates, at least for some species. However, the effects of calibration on estimations in the field must be further evaluated, especially for multilayered vegetation.  相似文献   

2.
One common problem encountered when restoring grasslands is the prominence of non-native plant species. It is unclear what effect non-native plants have on habitat quality of grassland passerines, which are among the most imperiled groups of birds. In 2004 and 2005, we compared patterns of avian reproduction and the mechanisms that might influence those patterns across a gradient of 13 grasslands in the Zumwalt Prairie in northeastern Oregon that vary in the degree of non-native plant cover (0.9–53.4%). We monitored the fate of 201 nests of all the breeding species in these pastures and found no association of percent non-native cover with nest densities, clutch size, productivity, nest survival, and nestling size. Regardless of the degree of non-native cover, birds primarily fed on Coleoptera, Orthoptera, and Araneae. But as percent non-native cover in the pastures increased, Orthoptera made up a greater proportion of diet and Coleoptera made up a smaller proportion. These diet switches were not the result of changes in terrestrial invertebrate abundance but may be related to decreases in percent bare ground associated with increasing cover of non-native vegetation. Measures of nest crypticity were not associated with cover of non-native vegetation, suggesting that predation risk may not increase with increased cover of non-native vegetation. Thus, the study results show that increased non-native cover is not associated with reduced food supplies or increased predation risk for nesting birds, supporting the growing body of evidence that grasslands with a mix of native and non-native vegetation can provide suitable habitat for native grassland breeding birds.  相似文献   

3.
Conifer woodlands have expanded into sagebrush (Artemisia spp.) ecosystems and degrade habitat for sagebrush obligate species such as the Greater Sage‐grouse (Centrocercus urophasianus). Conifer management is increasing despite a lack of empirical evidence assessing outcomes to grouse and their habitat. Although assessments of vegetation recovery after conifer removal are common, comparisons of successional trends with habitat guidelines or actual data on habitat used by sage‐grouse is lacking. We assessed impacts of conifer encroachment on vegetation characteristics known to be important for sage‐grouse nesting. Using a controlled repeated measures design, we then evaluated vegetation changes for 3 years after conifer removal. We compared these results to data from 356 local sage‐grouse nests, rangewide nesting habitat estimates, and published habitat guidelines. We measured negative effects of conifer cover on many characteristics important for sage‐grouse nesting habitat including percent cover of forbs, grasses, and shrubs, and species richness of forbs and shrubs. In untreated habitat, herbaceous vegetation cover was slightly below the cover at local nest sites, while shrub cover and sagebrush cover were well below cover at the nest sites. Following conifer removal, we measured increases in herbaceous vegetation, primarily grasses, and sagebrush height. Our results indicate that conifer abundance can decrease habitat suitability for nesting sage‐grouse. Additionally, conifer removal can improve habitat suitability for nesting sage‐grouse within 3 years, and trajectories indicate that the habitat may continue to improve in the near future.  相似文献   

4.
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.  相似文献   

5.
6.
Riparian habitats in the western United States are imperiled, yet they support the highest bird diversity in arid regions, making them a conservation priority. Riparian restoration efforts can be enhanced by information on species response to variation in habitat features. We examined the habitat selection of four riparian birds known as management indicators at restoration and reference sites along the Trinity River, California. We compared vegetation structure and composition at nest sites, territories, and random points to quantify used versus available habitat from 2012 to 2015. Vegetation in focal species' territories differed between site types, and from available habitat, indicating nonrandom site choice. Birds selected aspects of more structurally complex habitats, such as greater canopy cover, canopy height, and tree species richness. Yellow‐breasted Chats preferred greater shrub cover, and Yellow Warblers preferred greater cover by non‐native Himalayan blackberry. Territory preferences on restoration sites were often a subset of those on reference sites. One exception was canopy height, which was taller on restoration site territories than random points for all species, suggesting that birds preferentially used patches of remnant habitat. Few variables were significant in nest site selection. Restoration plantings along the Trinity River were only 3–10 years old during this study, and have not developed many of the characteristics of mature riparian habitat preferred by birds, but may improve in habitat value over time. Understanding habitat selection is especially important in recently human‐modified environments, where indirect cues used to assess habitat quality may become disassociated from actual habitat quality, potentially creating ecological traps.  相似文献   

7.
Vegetation cover and composition are two indicators commonly used to monitor terrestrial ecosystems. These indicators are currently quantified with a number of different methods. The interchangeability and relative benefits of different methods have been widely discussed in the literature, but there are few published comparisons that address multiple criteria across a broad range of grass- and shrub-dominated communities, while keeping sampling effort (time) approximately constant. This study compared the utility of three field sampling methods for ecological assessment and monitoring: line-point intercept, grid-point intercept, and ocular estimates. The criteria used include: (1) interchangeability of data, (2) precision, (3) cost, and (4) value of each method based on its potential to generate multiple indicators. Foliar cover by species was measured for each method in five plant communities in the Chihuahuan Desert. Line- and grid-point intercept provide similar estimates of species richness which were lower than those based on ocular estimates. There were no differences in the precision of the number of species detected. Estimates of foliar cover with line- and grid-point intercept were similar and significantly higher than those based on ocular estimates. Precision of cover estimates with line-point intercept was higher than for ocular estimates. Time requirements for the three methods were similar, despite the fact that the point-based methods included cover estimates for all canopy layers and the soil surface, while the ocular estimates included only the top canopy layer. Results suggest that point-based methods provide interchangeable data with higher precision than ocular estimates. Moreover these methods can be used to generate a much greater number of indicators that are more directly applicable to a variety of monitoring objectives, including soil erosion and wildlife habitat.  相似文献   

8.
We derive statistical properties of standard methods for monitoring of habitat cover worldwide, and criticize them in the context of mandated seagrass monitoring programs, as exemplified by Posidonia oceanica in the Mediterranean Sea. We report the novel result that cartographic methods with non-trivial classification errors are generally incapable of reliably detecting habitat cover losses less than about 30 to 50%, and the field labor required to increase their precision can be orders of magnitude higher than that required to estimate habitat loss directly in a field campaign. We derive a universal utility threshold of classification error in habitat maps that represents the minimum habitat map accuracy above which direct methods are superior. Widespread government reliance on blind-sentinel methods for monitoring seafloor can obscure the gradual and currently ongoing losses of benthic resources until the time has long passed for meaningful management intervention. We find two classes of methods with very high statistical power for detecting small habitat cover losses: 1) fixed-plot direct methods, which are over 100 times as efficient as direct random-plot methods in a variable habitat mosaic; and 2) remote methods with very low classification error such as geospatial underwater videography, which is an emerging, low-cost, non-destructive method for documenting small changes at millimeter visual resolution. General adoption of these methods and their further development will require a fundamental cultural change in conservation and management bodies towards the recognition and promotion of requirements of minimal statistical power and precision in the development of international goals for monitoring these valuable resources and the ecological services they provide.  相似文献   

9.
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P < 0.001), percent total vegetation cover (36.76% use vs. 32.96% random; P ≤ 0.001), and sagebrush density (2.12 plants/m2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height ( = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The interaction between percent sagebrush canopy cover and sagebrush height (β = −0.01, SE ≤ 0.01; odds ratio = 0.987 [95% CI = 0.983–0.992]) also was significant. Management could focus on avoiding additional loss of sagebrush habitat, identifying areas of critical winter habitat, and implementing management actions based on causal mechanisms (e.g., soil moisture, precipitation) that affect sagebrush community structure in this region. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
Abstract Efficient and accurate vegetation sampling techniques are essential for the assessment of wetland restoration success. Remotely acquired data, used extensively in many locations, have not been widely used to monitor restored wetlands. We compared three different vegetation sampling techniques to determine the accuracy associated with each method when used to determine species composition and cover in restored Pacific coast wetlands dominated by Salicornia virginica (perennial pickleweed). Two ground‐based techniques, using quadrat and line intercept sampling, and a remote sensing technique, using low altitude, high resolution, color and color infrared photographs, were applied to estimate cover in three small restoration sites. The remote technique provided an accurate and efficient means of sampling vegetation cover, but individual species could not be identified, precluding estimates of species density and distribution. Aerial photography was determined to be an effective tool for vegetation monitoring of simple (i.e., single‐species) habitat types or when species identities are not important (e.g., when vegetation is developing on a new restoration site). The efficiency associated with these vegetation sampling techniques was dependent on the scale of the assessment, with aerial photography more efficient than ground‐based sampling methods for assessing large areas. However, the inability of aerial photography to identify individual species, especially mixed‐species stands common in southern California salt marshes, limits its usefulness for monitoring restoration success. A combination of aerial photography and ground‐based methods may be the most effective means of monitoring the success of large wetland restoration projects.  相似文献   

11.
Nest predation is the leading cause of reproductive failure for grassland birds of conservation concern. Understanding variation in nest predation rates is complicated by the diverse assemblage of species known to prey on nests. As part of a long‐term study of grassland bird ecology, we monitored populations of predators known to prey on grassland bird nests. We used information theoretic approach to examine the predator community's association with habitat at multiple scales, including local vegetation structure of grassland patches, spatial attributes of grassland patches (size and shape), and landscape composition surrounding grassland patches (land cover within 400 and 1600 m). Our results confirmed that nest predators respond to habitat at multiple scales and different predator species respond to habitat in different ways. The most informative habitat models we selected included variability in local vegetation (CV in the density of forbs), local patch (area and edge‐to‐interior ratio), and landscape within a 1600 m buffer around grasslands (percent of land covered by human structures and development). As a separate question, we asked if models that incorporated information from multiple scales simultaneously might improve the ability to explain variation in the predator community. Multi‐ scale models were not consistently superior to models derived from variables focused at a single spatial scale. Our results suggest that minimizing human development on and surrounding conservation land and the management of the vegetation structure on grassland fragments both may benefit grassland birds by decreasing the risk of nest predation.  相似文献   

12.
Counts on Swainson's spurfowl Pternistis swainsonii were made during 1998–1999 within an intensive, fine‐grained, agricultural landscape to estimate population parameters, seasonal dispersion and habitat preferences. Radio‐transmitters were fitted to four birds to note habitat use and home ranges within the Summer breeding season. During Winter, population densities peaked, and birds exploited agricultural crops extensively. At the onset of Spring, densities dropped as birds paired to establish non‐overlapping breeding territories over a number of habitats with apparently sufficient cover and ‘natural’ food. Expanding grazed grassland appears to be the greatest threat to Swainson's spurfowl due to a lack of cover and food. The matrix of habitats within the landscape plays important roles in the success of this opportunistic spurfowl. Agricultural crops in the Winter sustain the population until the following Summer when natural savanna and ungrazed grasslands provide complementary foraging, nesting and roosting sites.  相似文献   

13.
The habitat association approach has been increasingly used in ecology to resolve problems in wildlife conservation and management. One problem related to habitat association studies is that they are restricted to small geographical areas within a species' range, and thus they are applicable to only a limited set of environmental conditions utilized by the species. In addition, very few studies address why the preference for specific habitat components may be adaptive for the species in question. The objective of this study was to examine how consideration of populations of a species from two dramatically different environments affects the results of habitat association modelling for a ground-nesting passerine, the Rock Bunting Emberiza cia . At a regional scale, a trend to defending breeding habitat patches with relatively higher stone cover was confined to birds from a temperate region in Slovakia. In contrast, in a semi-arid region in southeastern Spain, Rock Buntings preferred to use breeding habitat patches that had relatively higher grass cover. Combining data from both regions, breeding Rock Buntings showed a general pattern of using habitat patches close to hedges, with low bush cover, high ditch density and a steep slope. Whereas regional habitat association models appear to be sensitive to the particularities of the breeding environment, our study suggests that Rock Bunting breeding habitat association is constrained by the adults' tactics to protect themselves against predators. Although the birds prefer to nest in patches of low vegetation, the better to see nearby predators, these patches are ideally close to taller vegetation that can be used to provide cover when evading predators, and they are also of a rugged profile that helps the birds to approach and leave the nest stealthily.  相似文献   

14.
《新西兰生态学杂志》2011,15(2):171-175
Stem density, basal area, vegetation cover and vegetation surface area were compared as measures of the proportions of plant species present in North Okarito Forest, South Westland, for use in determining bird preferences for plant species. In general, stem density estimates of the proportions of canopy species were about 10 times lower than basal area estimates. The converse was true for estimates of the proportions of sub- canopy and understorey species. The proportions estimated from vegetation cover and vegetation surface area were similar for most species, and were intermediate between the proportions estimated from stem density and basal area. However, in the upper forest tiers, vegetation cover gave lower estimates for the proportions of canopy species and higher estimates for the proportions of sub-canopy species than given by vegetation surface area. These differences affect calculation of bird preferences for plant species. We recommend vegetation surface area as a measure of the proportional availability of plant species to birds because it is appropriate to most birds in New Zealand forests, is likely to be more accurate than visual estimates of vegetation cover, and can be measured on the same plots separately for trunks, branches, foliage, and fruit.  相似文献   

15.
上海闵行区园林鸟类群落嵌套结构   总被引:4,自引:2,他引:2  
城市中的园林绿地呈现斑块状分布,其栖息地特征与岛屿栖息地相似。2008年11月至2009年10月,对上海市闵行区内的7块城市绿地进行调查,记录雀形目鸟类的分布情况,并运用Nestedness temperature calculator软件,检验其群落结构是否符合嵌套结构。运用Arc GIS软件分析该地区的卫星图片,收集7块样地的面积、绿地盖度、水源距离和人为干扰程度等数据,结合实地调查所得到的数据,分析这一嵌套结构的形成原因和影响因素。结果显示:上海市闵行区城市绿地中的雀形目鸟类分布是显著的嵌套结构,园林面积、绿地面积和水源情况都对其嵌套结构有显著影响。但是与真正岛屿上存在的群落分布嵌套结构不同,人为干扰程度对这一结构也有非常明显的影响。基于上述结果可以看出,影响上海市园林鸟类的群落嵌套结构的主要原因是栖息地的结构和人为干扰程度。因此,建议在规划和建设城市公园和绿地时,应该偏重于面积较大,植被盖度和丰富度高,结构合理的园林,并且尽量减少人为干扰。  相似文献   

16.
The post‐fledging period is a critical life stage for young grassland birds. Habitat selection by recently fledged birds may differ from that of adults and may change as juveniles transition from the care and protection of parents to independence. To describe patterns of habitat selection during these important life stages, we studied habitat use by juvenile Grasshopper Sparrows (Ammodramus savannarum) in a Conservation Reserve Program grassland in Maryland. We used radio‐telemetry to track daily movement patterns of two age classes of Grasshopper Sparrows during the post‐fledging period. Sparrows were classified as either dependent (<32‐d‐old) or independent (≥32‐d‐old). We characterized the vegetation at 780 vegetation plots (390 plots where birds were located and 390 paired random plots). Microhabitats where dependent birds were found had significantly more bare ground, litter, and plant species richness than paired random plots. In addition, dependent birds were found in plots with less bare ground, more warm‐season grass cover, more total vegetation cover, and more forb cover than plots used by independent birds. Plots where independent birds were located also had significantly more bare ground than random plots. Dependent birds are less able to escape from predators because their flight feathers are not fully grown so they may benefit from remaining in areas of greater vegetation cover. However, juveniles transitioning from dependence to independence must forage on their own, possibly explaining their increased use of more open areas where foraging may be easier. To properly manage habitat for grassland birds, management strategies must consider the changing needs of birds during different stages of development. Our results highlight the importance of diverse grassland ecosystems for juvenile grassland birds during the transition to independence.  相似文献   

17.
Summary

A study was made in the Cairngorms, Scotland to make recommendations for a monitoring scheme capable of detecting changes in the vegetation caused by recreational pressure following the development of a funicular railway. Four methods were used in field trials to assess percentage cover of plant species and gravel, rock and bare ground, where appropriate, in two vegetation types (open and closed). The methods used were visual estimates in 50 × 40 cm quadrats (Q), the mean of visual estimates in twenty 10 × 10 cm sub-quadrats of the 50 × 40 cm quadrats (Q20), a modified point intercept method (RL) and photography. Variances between observers and between-quadrats were estimated for the different methods. The sampling design for detecting change was based on a model of variance, constructed from field trial data.

Between-observer and between-quadrat variances were related to mean percentage cover and approximated to a binomial distribution. The between-quadrat variance was larger than observer variance. The Q20 method achieved appreciably better precision than the other methods. Analysis of half of the 10 × 10 cmsub-quadrats (1/2Q20) selected in a checker board design achieved a relative efficiency of 78% compared with the Q20. This result suggests that comparable precision to the Q20 method could be achieved by choosing about 14 sub-quadrats in a larger quadrat, thus saving some time. Variation between quadrats also suggested that the Q20 method was the one of choice for maximising precision. The precision of the photographic method was based on fewer data points, so is less accurate than other estimates.

Minimum sample sizes were estimated for detecting a 10% relative change of a species in open vegetation with 30% cover (i.e. a change from 30% to <27 or to >33% cover). With a 10 % Type II error rate and 5 % Type I error rate the minimum sample sizes were 47 quadrats for Q, 18 for Q 20, 43 for RL, and 23 for the means of ten 10 × 10 cm sub-quadrats in open vegetation.

The most time-efficient field recording appeared to be the use of Q despite the required sample size being 2.6 times higher than that of Q20. The far lower time requirement per quadrat, however, compensated for the higher numbers. The number of quadrats would depend on the specified change in percentage cover and on the statistical significance level used. For example, to detect a 10% absolute change in cover (i.e. from 30% to either <20 % or >40 % cover) at 95 % probability the net effective recording time is estimated at 5 h per vegetation type while to detect a 5 % change at 99 % probability would require c. 25 h. Larger samples may be required for other species or for species with a low initial cover.  相似文献   

18.
Habitat selection is an inherently scale-sensitive process in which detected selection patterns frequently depend on the scale of analysis employed. We used a multi-scale modelling approach to identify how the distributions of two sympatric birds are shaped by differential selection at the landscape, land use and microhabitat scales and by human infrastructures as possible sources of disturbance. We studied two threatened steppe birds, the pin-tailed sandgrouse (PTS) and black-bellied sandgrouse (BBS) in central Spain. Land use gradients explained most of the variation in PTS and BBS occurrence, but there was cross-scale interdependence between the lower (microhabitat) and upper (landscape) spatial scales for the PTS. Synergies between the three scales highlighted the importance of integrating habitat scales in a single modelling framework. The process of habitat selection was also modulated by human disturbance. Both species selected ploughs of large size distant from houses, tracks and other infrastructures, although BBS exhibited broader habitat tolerance than the PTS, and was more sensitive to human disturbance. At microhabitat scale, PTS selected ploughs with greater green vegetation cover and insect abundance and fallows with lower dry vegetation cover and height but greater stone cover. This might reflect a trade-off between camouflage (vegetation and stone cover for concealment) and visibility for predator detection and escape. Ploughs and fallows should be maintained by means of traditional 2-year rotations and low management during the breeding season. Ongoing urbanization trends and infrastructure development inside protected areas should be limited. Multi-scale models were key to identify scale-specific factors that determine sandgrouse habitat preferences and conservation requirements at appropriate levels, and are recommended to better guide regional and local conservation efforts of threatened species.  相似文献   

19.
20.
Generally, great efforts are made in measuring features of landfill covers. However, conventional physical or chemical parameters reach their limits in indicating the small scale changes of the habitats. Bio-indication is a proven tool to assess habitat conditions. The advantages of vegetation monitoring are obvious: cheap, easy, and integrating over time and space. Our study displays, how vegetation can indicate landfill cover features by adapting some common evaluation methods. Ellenberg's ecological indicator values were used, but ubiquitous species were excluded from multivariate data analysis of the Ellenberg values. Four groups of habitats were distinguished according to their cover material: (i) loamy substrates; (ii) wet hollows and areas with mature compost; (iii) fresh compost and mechanically biologically treated waste; (iv) slag from municipal solid waste incineration and leachate-influenced areas with fresh untreated waste or sewage sludge. The differences were assessed by ecological indices. The results give a promising impression of the potential vegetation monitoring has in the indication of landfill cover features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号