首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study aimed to investigate the association of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (\(n = 200\)) and age-matched, sex-matched and ethnicity-matched healthy controls (\(n = 200\)) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 gene was significantly different between cases and controls (\(P = 0.005\) and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, \(P = 0.020\)) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P \(=\) 0.005) genotypes of GSTP1 \(\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}\), and C/T (OR: 5.8, 95% CI: 1.26–26.34, \(P = 0.024\)) genotype of GSTP1 \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) with CAD. The A/G and G/G genotypes of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and C/T genotype of \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, \(P = 0.018\)). Moreover, the recessive model of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, \(P = 0.020\)). In conclusion, statistically significant associations of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) (A/G, G/G) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) (C/T) genotypes with CAD were observed.  相似文献   

2.
Pentatricopeptide repeat (PPR) gene family plays an essential role in the regulation of plant growth and organelle gene expression. Some PPR genes are related to fertility restoration in plant, but there is no detailed information in Gossypium. In the present study, we identified 482 and 433 PPR homologues in Gossypium raimondii (\(\hbox {D}_{5}\)) and G. arboreum (\(\hbox {A}_{2}\)) genomes, respectively. Most PPR homologues showed an even distribution on the whole chromosomes. Given an evolutionary analysis to PPR genes from G. raimondii (\(\hbox {D}_{5}\)), G. arboreum (\(\hbox {A}_{2}\)) and G. hirsutum genomes, eight PPR genes were clustered together with restoring genes of other species. Most cotton PPR genes were qualified with no intron, high proportion of \(\upalpha \)-helix and classical tertiary structure of PPR protein. Based on bioinformatics analyses, eight PPR genes were targeted in mitochondrion, encoding typical P subfamily protein with protein binding activity and organelle RNA metabolism in function. Further verified by RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, two PPR candidate genes, Gorai.005G0470 (\(\hbox {D}_{5}\)) and Cotton_A_08373 (\(\hbox {A}_{2}\)), were upregulated in fertile line than sterile line. These results reveal new insights into PPR gene evolution in Gossypium.  相似文献   

3.
4.
5.
Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, \(A_\mathrm{R}\) and \(B_\mathrm{R}\), each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for \(A_\mathrm{R}\) and \(B_\mathrm{R}\), we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., \(f \Delta t\)-long for DrugA and \((1-f) \Delta t\)-long for DrugB with \(0 \le f \le 1\) and \(\Delta t \ge 0\)). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, \(\mathcal {A/B} = A_\mathrm{R}/B_\mathrm{R}\), and the effect of each drug. We determine a critical ratio, which we term \(\mathcal {(A/B)}^{*}\), at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, \(\mathcal {A/B}\) changes monotonically to \(\mathcal {(A/B)}^{*}\) and then, during the second stage, remains at \(\mathcal {(A/B)}^{*}\) thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.  相似文献   

6.
The mechanical response of skin to external loads is influenced by anisotropy and viscoelasticity of the tissue, but the underlying mechanisms remain unclear. Here, we report a study of the main effects of tissue orientation (TO, which is linked to anisotropy) and strain rate (SR, a measure of viscoelasticity), as well as the interaction effects between the two factors, on the tensile properties of skin from a porcine model. Tensile testing to rupture of porcine skin tissue was conducted to evaluate the sensitivity of the tissue modulus of elasticity (E) and fracture-related properties, namely maximum stress \((\sigma _{U})\) and strain \((\varepsilon _{U})\) at \(\sigma _{U}\), to varying SR and TO. Specimens were excised from the abdominal skin in two orientations, namely parallel (P) and right angle (R) to the torso midline. Each TO was investigated at three SR levels, namely 0.007–0.015 \(\hbox {s}^{-1}\) (low), 0.040 \(\hbox {s}^{-1}\) (mid) and 0.065 \(\hbox {s}^{-1}\) (high). Two-factor analysis of variance revealed that the respective parameters responded differently to varying SR and TO. Significant changes in the \(\sigma _{U}\) were observed with different TOs but not with SR. The \(\varepsilon _{U}\) decreased significantly with increasing SR, but no significant variation was observed for different TOs. Significant changes in E were observed with different TOs; E increased significantly with increasing SR. More importantly, the respective mechanical parameters were not significantly influenced by interactions between SR and TO. These findings suggest that the trends associated with the changes in the skin mechanical properties may be attributed partly to differences in the anisotropy and viscoelasticity but not through any interaction between viscoelasticity and anisotropy.  相似文献   

7.
Genetic diversity during prebreeding or postbreeding programme, is the key pillar to characterize the valuable traits and gene of interest. Whereas, superior or inferior heterotic performance of \(\hbox {F}_{1}\) depend on the diverse nature of their pedigree. Therefore, the aim of this study was to see the diversity between the interspecific crosses and effect of heterosis, and inheritance for the morphological traits and ToLCV resistance. All the 24 \(\hbox {F}_{1}\) interspecific crosses were classified into four clusters on the basis of morphological traits as well as simple sequence repeat (SSR) markers. Among the \(\hbox {F}_{1}\) hybrids, 23 were grouped into clusters II, III and IV with different phylogeny, while \(\hbox {PBC} \times \) EC 521080 was individual with cluster I. On the basis of visual observation of fruit colour, deep red and green colours in the crosses of S. pimpinellifolium (EC 521080) and S. habrochaites (EC 520061) exhibited dominant effects. In context of heterosis breeding, the crosses which were made using Solanum pimpinellifolium (EC 521080), S. chmielewskii (EC 520049) and S. cerasiforme (EC 528372) were better for yield capacity and the crosses of S. habrochaites (EC 520061) exhibited low and negative heterosis for ToLCV resistance. The \(\hbox {F}_{2}\) progenies were segregated in various Mendelian ratio as follows 3:1, 1:2:1, 1:3, 13:3, 15:1, 12:3:1 and 9:6:1 for ToLCV disease reaction of incidence, plant growth habit and fruit colour appearance, respectively. Therefore, these interspecific crosses can be utilized for developing high yield, impressive fruit colour combiners and resistant hybrids/varieties of tomato.  相似文献   

8.
9.
Okra’s (Abelmoschus esculentus (L.) Moench) commercial cultivation is threatened in the tropics due to high incidence of yellow vein mosaic virus (YVMV) disease. Okra geneticists across the world tried to understand the inheritance pattern of YVMV disease tolerance without much success. Therefore, the inheritance pattern of YVMV disease in okra was revisited by employing six generations (\(\hbox {P}_{1}\), \(\hbox {P}_{2}\), \(\hbox {F}_{1}\), \(\hbox {F}_{2}\), \(\hbox {BC}_{1}\) and \(\hbox {BC}_{2}\)) of four selected crosses (one tolerant \(\times \) tolerant, two tolerant \(\times \) susceptible and one susceptible \(\times \) susceptible) using two tolerant (BCO-1 and Lal Bhendi) and two susceptible (Japanese Jhar Bhendi and PAN 2127) genotypes. Qualitative genetic analysis was done on the basis of segregation pattern of tolerant and susceptible plants in \(\hbox {F}_{2}\) and backcross generations of all the four crosses. It revealed that a single dominant gene along with some minor factors governed the disease tolerant trait in both the tolerant parents used. However, it was observed that genes governing disease tolerance identified in both the tolerant variety used was different. It could be concluded that the gene governing YVMV disease tolerance in okra was genotype specific. Further, duplicate gene action as evident from an approximate ratio of 15 : 1 (tolerant : susceptible) in the \(\hbox {F}_{2}\) population in the cross of two tolerant varieties gave a scope of increasing the tolerance level of the hybrid plants when both the tolerant genes are brought together. However, generation mean analysis revealed involvement of both additive and nonadditive effects in the inheritance of disease tolerance. Thus, the present study confirms that a complicated genetic inheritance pattern is involved in the disease tolerance against YVMV trait. The major tolerance genes could be transferred to other okra varieties, but the tolerance breaking virus strains might not allow them to achieve tolerance in stable condition. Therefore, accumulation of additional genes may be needed for a sustainable tolerance phenotype in okra.  相似文献   

10.
Previous genomewide association studies (GWAS) and meta-analyses have enumerated several genes/loci in major histocompatibility complex region, which are consistently associated with rheumatoid arthritis (RA) in different ethnic populations. Given the genetic heterogeneity of the disease, it is necessary to replicate these susceptibility loci in other populations. In this case, we investigate the analysis of two SNPs, rs13192471 and rs6457617, from the human leukocyte antigen (HLA) region with the risk of RA in Tunisian population. These SNPs were previously identified to have a strong RA association signal in several GWAS studies. A case–control sample composed of 142 RA patients and 123 healthy controls was analysed. Genotyping of rs13192471 and rs6457617 was carried out using real-time PCR methods by TaqMan allelic discrimination assay. A trend of significant association was found in rs6457617 TT genotype with susceptibility to RA (\(P = 0.04\), \(p_{c} = 0.08\), \(\hbox {OR} = 1.73\)). Moreover, using multivariable analysis, the combination of rs6457617*TT–HLA-DRB1*\(04^{+}\) increased risk of RA (\(\hbox {OR} = 2.38\)), which suggest a gene–gene interaction event between rs6457617 located within the HLA-DQB1 and HLA-DRB1. Additionally, haplotypic analysis highlighted a significant association of rs6457617*T–HLA-DRB1*\(04^{+}\) haplotype with susceptibility to RA (\(P = 0.018\), \(p_{c} = 0.036\), \(\hbox {OR} = 1.72\)). An evidence of association was shown subsequently in \(\hbox {antiCCP}^{+}\) subgroup with rs6457617 both in T allele and TT genotype (\(P = 0.01\), \(p_{c} = 0.03\), \(\hbox {OR} = 1.66\) and \(P = 0.008\), \(p_{c} = 0.024\), \(\hbox {OR} = 1.28\), respectively). However, no association was shown for rs13192471 polymorphism with susceptibility and severity to RA. This study suggests the involvement of rs6457617 locus as risk variant for susceptibility/severity to RA in Tunisian population. Secondly, it highlights the gene–gene interaction between HLA-DQB1 and HLA-DRB1.  相似文献   

11.
12.
A number of studies have investigated the association of lactase (LCT, C/T-13910) gene polymorphism with bone mineral density (BMD) and fracture risk, but previous results were inconclusive. In this study, a meta-analysis was performed to quantify the association of LCT (C/T-13910) polymorphism with BMD and fracture risk. Eligible publications were searched in the PubMed, Web of Science, Embase databases, Google Scholar, Yahoo and Baidu. Pooled weighed mean difference (WMD) or odds ratio (OR) with their 95% confidence interval (CI) were calculated using a fixed-effects or random-effects model. A total of nine articles with 8871 subjects were investigated in the present meta-analysis. Overall, the TT/TC genotypes of LCT 13910 C/T polymorphism showed significantly higher BMD than those with the CC genotype at femur neck (FN) (\(\hbox {WMD} = 0.011\,\hbox {g/cm}^{2}\), 95% CI \(=\) 0.004–0.018, \(P = 0.003\)). Besides, LCT 13910 C/T polymorphism may decrease the risk of any site fractures (for TT versus TC \(+\) CC, OR \(=\) 0.813, 95% CI \(=\) 0.704–0.938, \(P = 0.005\); for T allele versus C allele, OR \(=\) 0.885, 95% CI \(=\) 0.792–0.989, \(P = 0.032\)). However, there was no significant association of LCT 13910 C/T polymorphism with BMD at lumbar spine and risk of vertebral fractures under all genetic contrast models (all P values were \({>}0.05\)). The meta-analysis suggests that there are significant effects of LCT 13910 C/T polymorphism on BMD and fracture risk. Large-scale studies with different ethnic populations will be needed to further investigate the possible race-specific effect of LCT 13910 C/T polymorphism on BMD and fracture risk.  相似文献   

13.
We study the effect of changes in flow speed on competition of an arbitrary number of species living in advective environments, such as streams and rivers. We begin with a spatial Lotka–Volterra model which is described by n reaction–diffusion–advection equations with Danckwerts boundary conditions. Using the dominant eigenvalue \(\lambda \le 0\) of the diffusion–advection operator subject to boundary conditions, we reduce the model to a system of ordinary differential equations. We impose a “transitive arrangement” of the competitors in terms of their interspecific coefficients and growth rates, which means that in the absence of advection, we have the following situation: for all \(1\le i<j\le n\), species i out-competes species j, while species j has higher intrinsic growth rate than species i. Changing advection speed in the original spatial model corresponds to changing the value of \(\lambda \) in the spatially implicit model. Considering the cases of the odd and even n separately, we obtain explicit intervals of the values of \(\lambda \) that allow all n species to be present in the habitat (coexistence interval). Stability of this equilibrium is shown for \(n\le 4\).  相似文献   

14.
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus \(\textit{E}_\mathrm{s}\) on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of \(\lambda =1.1\), were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and \(\textit{E}_\mathrm{s}\,=\,\)140 KPa and (2) \(\textit{E}_\mathrm{s}\,=\,10\), 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35\(\text {e}^{-2}\), 0.235\(\text {e}^{-2}\) and 0.6\(\text {e}^{-2}\)) than for FA attachment (0.0952\(\text {e}^{-2}\), 0.0472\(\text {e}^{-2}\) and 0.05\(\text {e}^{-2}\)). For increasing \(\textit{E}_\mathrm{s}\), the largest maximum principal strain was 4.4\(\text {e}^{-4}\), 5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\) and 5.3\(\text {e}^{-4}\) in the membrane, 9.5\(\text {e}^{-4}\), 1.1\(\text {e}^{-4}\), 1.2\(\text {e}^{-3}\) and 1.2\(\text {e}^{-3}\) in the cytosol, and 4.5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\), 5.7\(\text {e}^{-4}\) and 5.7\(\text {e}^{-4}\) in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.  相似文献   

15.
This paper uses combinatorics and group theory to answer questions about the assembly of icosahedral viral shells. Although the geometric structure of the capsid (shell) is fairly well understood in terms of its constituent subunits, the assembly process is not. For the purpose of this paper, the capsid is modeled by a polyhedron whose facets represent the monomers. The assembly process is modeled by a rooted tree, the leaves representing the facets of the polyhedron, the root representing the assembled polyhedron, and the internal vertices representing intermediate stages of assembly (subsets of facets). Besides its virological motivation, the enumeration of orbits of trees under the action of a finite group is of independent mathematical interest. If G is a finite group acting on a finite set X, then there is a natural induced action of G on the set \(\mathcal{T}_{X}\) of trees whose leaves are bijectively labeled by the elements of X. If G acts simply on X, then |X|:=|X n |=n?|G|, where n is the number of G-orbits in X. The basic combinatorial results in this paper are (1) a formula for the number of orbits of each size in the action of G on \(\mathcal{T}_{X_{n}}\), for every n, and (2) a simple algorithm to find the stabilizer of a tree \(\tau\in\mathcal{T} _{X}\) in G that runs in linear time and does not need memory in addition to its input tree. These results help to clarify the effect of symmetry on the probability and number of assembly pathways for icosahedral viral capsids, and more generally for any finite, symmetric macromolecular assembly.  相似文献   

16.
Motivated by the propagation of thin bacterial films around planar obstacles, this paper considers the dynamics of travelling wave solutions to the Fisher–KPP equation \(u_t = u(1-u) + u_{xx} + u_{yy}\) in a planar strip \(-\infty< x < \infty \), \(0 \le y \le L\). We examine the propagation of fronts in the presence of a mixed boundary condition (also referred to as a ‘partially absorbing’ or ‘reactive’ boundary) \(u_y = \alpha u\), with \(\alpha >0\), at \(y=0\). The presence of boundary conditions of this kind leads to the development of front solutions that propagate in x but contain transverse structure in y. Motivated by the observation that the speed of propagation in the Fisher–KPP equation is determined (for exponentially decaying initial conditions) by the behaviour at the leading edge, we analyse the linearised Fisher–KPP equation in order to estimate the speed of the stable travelling front, a function of the width L and the imposed boundary conditions. For wide strips the speed estimate based on the linearised equation agrees well with the results of numerical simulations. For narrow channels numerical simulations indicate that the stable front propagates more slowly, and for sufficiently small L or sufficiently large \(\alpha \) the front speed falls to zero and the front collapses. The reason for the collapse is the non-existence, far behind the front, of a stable positive equilibrium solution u(xy). While existence of these equilibrium states can be demonstrated via phase plane arguments, the investigation of stability is similar to calculations of critical patch sizes carried out in similar ecological models.  相似文献   

17.

Background

Cancer is an evolutionary process characterized by the accumulation of somatic mutations in a population of cells that form a tumor. One frequent type of mutations is copy number aberrations, which alter the number of copies of genomic regions. The number of copies of each position along a chromosome constitutes the chromosome’s copy-number profile. Understanding how such profiles evolve in cancer can assist in both diagnosis and prognosis.

Results

We model the evolution of a tumor by segmental deletions and amplifications, and gauge distance from profile \(\mathbf {a}\) to \(\mathbf {b}\) by the minimum number of events needed to transform \(\mathbf {a}\) into \(\mathbf {b}\). Given two profiles, our first problem aims to find a parental profile that minimizes the sum of distances to its children. Given k profiles, the second, more general problem, seeks a phylogenetic tree, whose k leaves are labeled by the k given profiles and whose internal vertices are labeled by ancestral profiles such that the sum of edge distances is minimum.

Conclusions

For the former problem we give a pseudo-polynomial dynamic programming algorithm that is linear in the profile length, and an integer linear program formulation. For the latter problem we show it is NP-hard and give an integer linear program formulation that scales to practical problem instance sizes. We assess the efficiency and quality of our algorithms on simulated instances.
  相似文献   

18.
The Arabian oryx (Oryx leucoryx) historically ranged across the Arabian Peninsula and neighboring countries until its extirpation in 1972. In 1963–1964 a captive breeding program for this species was started at the Phoenix Zoo (PHX); it ultimately consisted of 11 animals that became known as the ‘World Herd’. In 19781979 a wild population was established at the Shaumari Wildlife Reserve (SWR), Jordan, with eight descendants from the World Herd and three individuals from Qatar. We described the mtDNA and nuclear genetic diversity and structure of PHX and SWR. We also determined the long-term demographic and genetic viability of these populations under different reciprocal translocation scenarios. PHX displayed a greater number of mtDNA haplotypes (n = 4) than SWR (n = 2). Additionally, PHX and SWR presented nuclear genetic diversities of \(\bar{N}_{\text{A}}\) = 2.88 vs. 2.75, \(\bar{H}_{\text{O}}\) = 0.469 vs. 0.387, and \(\bar{H}_{\text{E}}\) = 0.501 vs. 0.421, respectively. Although these populations showed no signs of inbreeding (\(\bar{F}_{\text{IS}}\) ≈ 0), they were highly differentiated (\(G^{\prime\prime}_{\text{ST}}\) = 0.580; P < 0.001). Migration between PHX and SWR (Nm = 1, 4, and 8 individuals/generation) increased their genetic diversity in the short-term and substantially reduced the probability of extinction in PHX during 25 generations. Under such scenarios, maximum genetic diversities were achieved in the first generations before the effects of genetic drift became predominant. Although captive populations can function as sources of genetic variation for reintroduction programs, we recommend promoting mutual and continuous gene flow with wild populations to ensure the long-term survival of this species.  相似文献   

19.
Wheat stripe (yellow) rust, caused by Puccinia striiformis West. f. sp. tritici (Pst), is one of the most destructive diseases in many wheat-growing countries, especially in China, the largest stripe rust epidemic area in the world. Growing the resistant cultivars is an effective, economic and environmentally friendly way to control this disease. Wheat cultivar Zhengmai 7698 has shown a high-level resistance to wheat stripe rust. To elucidate its genetic characteristics and location of the resistance gene, Zhengmai 7698 was crossed with susceptible variety Taichung 29 to produce \(\hbox {F}_{{1}}\), \(\hbox {F}_{{2}}\) and \(\hbox {BC}_{{1}}\) progeny generations. The genetic analysis showed that the stripe rust resistance in Zhengmai 7698 to Pst predominant race CYR32 was controlled by a single-dominant gene, namedYrZM. Bulked segregant analysis and simple sequence repeat (SSR) markers were used to map the gene. Four SSR markers, Xbarc198, Xwmc179, Xwmc786 and Xwmc398 on chromosome 6BL were polymorphic between the parents and resistance, and susceptible bulks. A linkage genetic map was constructed using 212 \(\hbox {F}_{{2}}\) plants in the sequential order of Xwmc398, Xwmc179, YrZM, Xbarc198, Xwmc786. As this gene is effective against predominant race CYR32, it is useful in combination with other resistance genes for developing new wheat cultivars with resistance to stripe rust.  相似文献   

20.
In this paper, the \(\mathcal {H}_{\infty }\) filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov–Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed \(\mathcal {H}_{\infty }\) performance. Second, based on the above analysis, the existence of the designed \(\mathcal {H}_{\infty }\) filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号