首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared land cover, riparian vegetation, and instream habitat characteristics with stream macroinvertebrate assemblages in 25 catchments in the Carpathian Mountains in Central Europe. This study area was particularly selected because of its diverse history of forest and agricultural ecosystems linked to geopolitical dynamic, which provide a suite of unique landscape scale, land cover settings in one ecoregion. Canonical Correspondence Analysis (CCA) showed that variation in composition and structure of macroinvertebrate assemblages was primarily related to four land cover types, and not to riparian or instream habitat. These were the portions in the catchment areas of (1) broadleaved forest, (2) fine-grained agricultural landscape mosaic with scattered trees (e.g., pre-industrial cultural landscape), (3) mixed forest, and (4) natural grassland without trees. Principal Component Analysis (PCA) suggested that land cover types and stream channel substrates co-varied. The PCA also showed that chemical variables, including organic carbon, had higher values in the agricultural landscape compared to natural forests. The major source of variation among taxa in streams was higher abundance of Diptera in agricultural landscapes and of Plecoptera, Coleoptera, Trichoptera, and Amphipoda in forests. Gastropoda and Oligochaeta were more abundant in open, fine-grained agricultural landscape mosaics with scattered trees. Ephemeroptera taxa were quite indifferent to these gradients in catchment land cover, but showed a tendency of being more abundant in the pre-industrial cultural landscape. Our findings suggest that land cover can be used as a proxy of the composition and structure of macroinvertebrate assemblages. This means that land use management at the catchment scale is needed for efficient conservation and recovery of stream invertebrate communities.  相似文献   

2.
Shovelnose sturgeon Scaphirhynchus platorynchus are a large‐river fish distributed throughout the Mississippi River basin, including the lower 1,533 km of the Mississippi River where riverine habitat has been and continues to be modified for navigation and is a potential site for development of instream hydrokinetic electric power generation. Information about habitat use and preference is essential to future conservation efforts. Shovelnose sturgeon have previously been found to select particular habitat types, and these selected habitats vary seasonally; although these past analyses do not consider the selected habitats in a landscape context. We used ecological niche factor analysis (ENFA) that uses distributions of telemetry locations and environmental variables to model habitat suitability in a landscape context. We recorded 333 locations of shovelnose sturgeon during July–December 2013 that included periods of relatively high and low river stages. The ENFA analysis indicated high‐suitability locations were in or near deep water during both high and low river stages. During high river stages, high‐suitability locations were near island tip habitat, deep water, and steep bottom slope and far from main channel habitat. During low stages, high‐suitability locations were in or near deep water and main channel habitat and far from secondary channel and wing dike habitats. This landscape‐scale analysis supports seasonal shifts in habitat use and provides insights that can be used to inform habitat conservation and management to benefit shovelnose sturgeon in the lower Mississippi River and possibly other large rivers.  相似文献   

3.
There has been increasing interest in algae‐based bioassessment, particularly, trait‐based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well‐proven ecohydrological modeling enabled to predict long‐term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait‐based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long‐term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.  相似文献   

4.
5.
6.
Rapid urbanization throughout the world is expected to cause extensive loss of biodiversity in the upcoming decades. Disturbances associated with urbanization frequently operate over multiple spatial scales such that local species extirpations have been attributed both to localized habitat degradation and to regional changes in land use. Urbanization also may shape stream communities by restricting species dispersal within and among stream reaches. In this patch-dynamics view, anthropogenic disturbances and isolation jointly reduce stream biodiversity in urbanizing landscapes. We evaluated predictions of stream invertebrate community composition and abundance based on variation in environmental conditions at five distinct spatial scales: stream habitats, reaches, riparian corridors and watersheds and their spatial location within the larger three-river basin. Despite strong associations between biodiversity loss and human density in this study, local stream habitat and stream reach conditions were poor predictors of community patterns. Instead, local community diversity and abundance were more accurately predicted by riparian vegetation and watershed landscape structure. Spatial coordinates associated with instream distances provided better predictions of stream communities than any of the environmental data sets. Together, results suggest that urbanization in the study region was associated with reduced stream invertebrate diversity through the alteration of landscape vegetation structure and patch connectivity. These findings suggest that maintaining and restoring watershed vegetation corridors in urban landscapes will aid efforts to conserve freshwater biodiversity.  相似文献   

7.
Understanding the environmental factors driving species‐genetic diversity correlations (SGDCs) is critical for designing appropriate conservation and management strategies to protect biodiversity. Yet, few studies have explored the impact of changing land use patterns on SGDCs specifically in aquatic communities. This study examined patterns of genetic diversity in roach (Rutilus rutilus L.) together with fish species composition across 19 locations in a large river catchment, spanning a gradient in land use. Our findings show significant correlations between some, but not all, species and genetic diversity end points. For example, genetic and species differentiation showed a weak but significant linear relationship across the Thames catchment, but additional diversity measures such as allelic richness and fish population abundance did not. Further examination of patterns in species and genetic diversity indicated that land use intensification has a modest effect on fish diversity compared to the combined influence of geographical isolation and land use intensification. These results indicate that environmental changes in riparian habitats have the potential to amplify shifts in the composition of stream fish communities in poorly connected river stretches. Conservation and management strategies for fish populations should, therefore, focus on enhancing connectivity between river stretches and limit conversion of nearby land to arable or urban use to maintain current levels of biodiversity.  相似文献   

8.
Urbanisation represents a growing threat to natural communities across the globe. Small aquatic habitats such as ponds are especially vulnerable and are often poorly protected by legislation. Many ponds are threatened by development and pollution from the surrounding landscape, yet their biodiversity and conservation value remain poorly described. Here we report the results of a survey of 30 ponds along an urban land-use gradient in the West Midlands, UK. We outline the environmental conditions of these urban ponds to identify which local and landscape scale environmental variables determine the biodiversity and conservation value of the macroinvertebrate assemblages in the ponds. Cluster analysis identified four groups of ponds with contrasting macroinvertebrate assemblages reflecting differences in macrophyte cover, nutrient status, riparian shading, the nature of the pond edge, surrounding land-use and the availability of other wetland habitats. Pond conservation status varied markedly across the sites. The richest macroinvertebrate assemblages with high conservation value were found in ponds with complex macrophyte stands and floating vegetation with low nutrient concentrations and little surrounding urban land. The most impoverished assemblages were found in highly urban ponds with hard-engineered edges, heavy shading and nutrient rich waters. A random forest classification model revealed that local factors usually had primacy over landscape scale factors in determining pond conservation value, and constitute a priority focus for management.  相似文献   

9.
景观对河流生态系统的影响   总被引:4,自引:0,他引:4  
欧洋  王晓燕 《生态学报》2010,30(23):6624-6634
从景观的视角研究河流生态系统,是目前河流生态学中受到广泛关注且发展迅速的内容之一。流域内多尺度景观强烈影响河流的理化及生物特征,已成为共识,但有关量度、整合景观与河流生态系统二者之间联系的理论体系与方法的建立尚处于起步阶段。对景观组成与空间格局影响河流生态系统的机制与途径进行了系统总结,提出了该领域研究中的主要难题,即如何识别景观中人为因素和自然因素的协变现象,如何衡量多空间尺度景观对河流生态系统的交互影响,如何理解景观阈值的不确定性。为克服当前研究面临的困难与挑战,填补已有知识的不足,提出今后研究的重点方向:河流景观分类系统的改进;更具代表性时空数据的采集;新型景观指标的开发与应用;微观尺度数据与宏观尺度数据的整合等。  相似文献   

10.
As European integration increasingly affects pan-European nature conservation, indicators for the assessment of habitats are urgently needed to support ecosystem integrity monitoring as well as the target of halting biodiversity loss by 2010. The Natura 2000 network of protected sites with a strong focus on the protection of habitat types and strict monitoring obligations is now legally binding for all Member States. From a set of indicators that have been proposed for habitat monitoring by the SPIN project (Spatial Indicators for European Nature Conservation) we describe measures of landscape structure and soil function and their potential for the monitoring and management of protected areas and the surrounding landscape. In a case study from Austria, we show that structure-related indicators hold potential for the documentation of local-scale changes on a degraded raised bog Natura 2000 site. In a regional scale case study in northern Germany, we show how landscape metrics relate agricultural statistics, e.g. farm size and livestock density to landscape structure. In a third case study from Slovenia, we show how coarse-scale soil data can be disaggregated to finer scale by integrating topographic information and additional parameters for modelling, and production of soil-related habitat suitability maps. From these case studies we provide an overview of some of the critical issues affecting the selection and application of spatial indicators for nature conservation monitoring tasks. End users of spatial indicators work at different scales and in different biogeographical regions. The indicator selection and application demonstrated in our three case studies reveals the capability to contribute to a more quantitative evidence base for monitoring and management of biodiversity in Europe.  相似文献   

11.
The conservation of biodiversity in Europe is defined by Directive 92/43/EEC – commonly known as the Habitats Directive – relating to the conservation of natural habitats and of wild flora and fauna. This Directive established the creation of an ecological network of European protected areas – the Natura 2000 network – , and also recognised the need to manage these areas to maintain their “favourable conservation status”.This paper proposes a methodology which enables the conservation of biodiversity to be integrated into the management of Natura 2000 forest spaces. The methodology comprises an “environmental diagnosis” in three phases. The first phase evaluates the current conservation status of habitats using the following criteria: vital functions; floristic richness; forest structure; area occupied by the habitat; and recovery capacity. The second phase assesses the fragility of the space to determine the degree of vulnerability of habitats. This involves evaluating the fire hazard, erosion hazard, and the fragility of the vegetation. The last phase combines the two previous ones to generate management areas (optimum, intermediate or unfavourable) and to prioritise management actions.This methodology was applied in a protected forest area in the Natura 2000 network, located in Avila (Spain). Different management areas were generated for biodiversity conservation, and each habitat was associated to one of them. Finally, actions were prioritised and designed to raise the habitats to a “favourable conservation status”.  相似文献   

12.
This study evaluates which environmental factors influence the biodiversity, distribution and conservation of freshwater mollusc communities in a Mediterranean Biosphere Reserve in the south-western Iberian Peninsula. Habitat features and two biodiversity indices (native species richness and diversity) were evaluated at 109 locations. Environmental gradients were assessed using principal component analysis, which orders the habitat variables along two gradients: headwater characteristics and water availability. According to a canonical correspondence analysis, the main environmental factors related to the distribution of species and community structure were, also, climate and headwater habitat features (precipitation, order, channel width, slope and pH), and heterogeneity and trophic features (IHF index and instream macrophytes cover). Relationships between biodiversity indices and environmental variables were best explained by a regression model incorporating, basically, aridity index and precipitation as the variables that accounted for most of the variance. This study demonstrates that distribution of freshwater molluscs along a highly stressed by drought Mediterranean region mostly depends on the local pool of species and their adaptive patterns to water availability.  相似文献   

13.
生态系统中生境斑块并非孤立存在,而是嵌于周边景观基质中。生境内种群赖以生存的资源和环境条件不仅取决于生境本身,更与景观基质组成与结构紧密关联。黑颈鹤是青藏高原的旗舰物种,雅鲁藏布江中游河谷高寒湿地是全球最大的黑颈鹤越冬地,为其提供了良好的觅食生境。厘清该区域黑颈鹤觅食生境选择如何受景观基质组成结构的影响,对于青藏高原旗舰物种保护以及流域生态系统综合治理具有重要意义。运用景观生态学原理,以遥感影像和实地黑颈鹤种群调查数据为基础,结合景观基质多尺度缓冲区构建、相关分析以及Maxent模型,分析2000-2020年雅江中游河谷黑颈鹤国家级自然保护区(日喀则片区)景观格局时空变化和觅食地生境特征及其与黑颈鹤种群的关系,探究景观基质对黑颈鹤觅食地选择的影响,并利用关键生境因子模拟黑颈鹤生境适宜性分布。通过分析发现:(1)时间尺度上,雅江中游河谷耕地面积先增加后下降,滩地持续减少;空间尺度上,觅食黑颈鹤种群呈东多西少的集群分布特征,其分布范围与河谷内耕地分布基本吻合;(2)景观基质对黑颈鹤觅食地选择影响显著。景观结构上,黑颈鹤偏好连通性好、优势度高的景观基质;景观组成上,偏好基质中耕地和水域类型,这与黑颈鹤的觅食习性及对环境安全的生态位需求有关;(3)景观基质结构组成对黑颈鹤觅食地选择的影响具有显著的尺度效应。景观基质结构影响最显著的空间尺度为1500-2000m。但基质中耕地、草地和水域等景观组成要素对黑颈鹤的影响具有不同空间尺度效应,分别为1500m、3000m和4000m;(4)通过模型模拟,揭示出黑颈鹤适宜生境面积先增后减,但总体较2000年呈上升趋势,且基质中觅食地与耕地的距离、水域斑块密度和偏好景观组成的优势度始终是生境适宜性解释率最高的景观因子。本研究揭示出,该区域乡村规划应该统筹优化黑颈鹤栖息生境及其景观基质中的作物生产以及居民生活,形成以黑颈鹤旗舰物种保护为核心的高寒湿地生态系统综合管理模式,从而增强青藏高原高寒生态系统的稳定性和可持续性,同时也为深入研究物种生境选择机制提供了思路。  相似文献   

14.
The Natura 2000 network is regarded as one of the conservation success stories in the global effort to protect biodiversity. However, significant challenges remain in Natura 2000 implementation, owing to its rapid expansion, and lack of a coherent vision for its future. Scientific research is critical for identifying conservation priorities, setting management goals, and reconciling biodiversity protection and society in the complex political European landscape. Thus, there is an urgent need for a comprehensive evaluation of published Natura 2000 research to highlight prevalent research themes, disciplinary approaches, and spatial entities. We conducted a systematic review of 572 scientific articles and conference proceedings focused on Natura 2000 research, published between 1996 and 2014. We grouped these articles into ‘ecological’ and ‘social and policy’ categories. Using a novel application of network analysis of article keywords, we found that Natura 2000 research forms a cohesive small-world network, owing to the emphasis on ecological research (79% of studies, with a strong focus on spatial conservation planning), and the underrepresentation of studies addressing ‘social and policy’ issues (typically focused on environmental impact assessment, multi-level governance, agri-environment policy, and ecosystem services valuation). ‘Ecological’ and ‘social and policy’ research shared only general concepts (e.g., Natura 2000, Habitats Directive) suggesting a disconnection between these disciplines. The UK and the Mediterranean basin countries dominated Natura 2000 research, and there was a weak correlation between number of studies and proportion of national territory protected. Approximately 40% of ‘social and policy’ research and 26% of ‘ecological’ studies highlighted negative implications of Natura 2000, while 21% of studies found positive social and biodiversity effects. We emphasize the need for designing inter- and transdisciplinary research in order to promote a social-ecological understanding of Natura 2000, and advance EU conservation policies.  相似文献   

15.
Aim  To assess the relative impacts of spatial, local environmental and habitat connectivity on the structure of aquatic macrophyte communities in lakes designated for their conservation value. Location  Selected lakes of conservation importance all over Scotland, representing a wide variety of lake habitat types and associated macrophyte communities. Methods  Local environmental variables and species occurrence were measured in the field. Spatial variables were generated using principal coordinates of neighbour matrices (PCNM) analysis. Connectivity between each lake and its neighbours was defined as either (i) all lakes within a radius of 5, 10, 25, 50, 75 or 100 km; (ii) all lakes in same river system; or (iii) all lakes in the same catchment and upstream of the lake. Using variance partitioning within canonical correspondence analysis, the relative impact of E = local environment, S = space and C = lake connectivity was compared on submerged (n = 119 lakes) and emergent (n = 96 lakes) macrophyte assemblages. Results  Local environmental conditions, such as total phosphorus, alkalinity/conductivity and the presence of invasive species, as well as spatial gradients were key drivers of observed variation in macrophyte communities; e.g., for submerged macrophytes, a combination of local to moderate factors relating to water chemistry and broad‐scale gradients reflecting elevation and climate are important. Spatially structured environmental variables explained a large portion of observed variation. Main conclusions  Our findings confirmed the need to manage local environmental pressures such as eutrophication, but suggested that the traditional catchment approach was insufficient. The spatial aggregation of environmental and connectivity factors indicated that a landscape scale approach should be used in lake management to augment the risk assessment to conservation species from the deterioration of suitable lake sites over broad biogeographic areas.  相似文献   

16.
Natura 2000 targets the sustainable conservation of Europe's biodiversity. An important cornerstone of Natura 2000 is the Habitats Directive, which is currently implemented across European member states. However, straightforward implementation is not obvious since the favourable conservation status of habitats and species needs to be achieved at the member state level, while conservation objectives need to be formulated at the protected site level. To bridge this gap, we propose to start from regional conservation objectives before site level objectives are formulated. These regional conservation objectives have the advantage of providing a framework according to which conservation objectives can be allocated both within and outside the protected sites of the Natura 2000 network. Especially since they all contribute to the national or regional conservation status. Recently, Flanders (northern Belgium) has adopted this approach and has quantified conservation objectives at the regional scale. As the current regional conservation status of habitats and species is mostly unfavourable, regional conservation objectives entail a drastic increase in area (42%) for habitats, and active conservation measures for 78% of the species. We are convinced that the method outlined here, may substantially contribute to a helpful discussion about implementing and streamlining Natura 2000 across European member states.  相似文献   

17.
In order to understand the main ecological factors that influence the distribution of mountain vegetation in Azores and to use it as a model for nature conservation, a study on Santa Bárbara Mountain on Terceira Island was performed. A multivariate analysis was done on vegetation data and the abiotic factors governing the vegetation pattern are discussed. The major factors contributing to the observed vegetation patterns are wind exposure, soil water saturation and historical human impacts. The vegetation analysis showed that Azorean Mountain habitats have a high variation of vegetation structure as a result of the habitat heterogeneity and the extreme ecological conditions. Using the co-dominant plants as indicator species, eco-zones are distinguished, characterized by the combination of different ecological–human factors which contribute to the distribution of specific types of natural vegetation communities. The studies of vegetation distribution give important information about the relation between vegetation and landscape that is essential for conservation, restoration proposals and landscape planning. Azores terrestrial Natura 2000 sites are largely dominated by mountain vegetation, therefore this work provides essential background data for the management plans of these sites.  相似文献   

18.
19.
20.
1. This study investigated the relation of benthic macroinvertebrates to environmental gradients in Central European lowland rivers. Taxonomic structure (taxa) and functional composition (metrics) were related to gradients at four different spatial scales (ecoregion, catchment, reach and site). The environmental variables at the catchment‐, reach‐ and site scales reflected the intensity of human impact: catchment and floodplain land use, riparian and floodplain degradation, flow regulation and river bank and bed modification. 2. Field surveys and GIS yielded 130 parameters characterising the hydromorphology and land use of 75 river sections in Sweden, the Netherlands, Germany and Poland. Two hundred and forty‐four macroinvertebrate taxa and 84 derived community metrics and biotic indices such as functional guilds, diversity and composition measures were included in the analysis. 3. Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) showed that hydromorphological and land use variables explained 11.4%, 22.1% and 15.8% of the taxa variance at the catchment (‘macro’), reach (‘meso’) and site (‘micro’) scales, respectively, compared with 14.9%, 33.2% and 21.5% of the variance associated with the derived metrics. Ecoregion and season accounted for 10.9% and 20.5% of the variance of the taxonomic structure and functional composition, respectively. 4. Partial CCA (pCCA) and RDA (pRDA) showed that the unique variance explained was slightly higher for taxa than for metrics. By contrast, the joint variance explained for metrics was much higher at all spatial scales and largest at the reach scale. Environmental variables explained 46.8% of metric variance and 32.4% of taxonomic structure. 5. Canonical Correspondence Analysis and RDA identified clear environmental gradients along the two main ordination axes, namely, land use and hydromorphological degradation. The impact of catchment land use on benthic macroinvertebrates was mainly revealed by the proportion of urban areas. At the reach scale, riparian and floodplain attributes (bank fixation, riparian wooded vegetation, shading) and the proportion of large woody debris were strong predictors of the taxonomic structure and functional composition of benthic macroinvertebrates. At the site scale, artificial substrata indicated human impact, particularly the proportion of macro‐ and mesolithal used for bank enforcement (rip–rap). 6. Our study revealed the importance of benthic macroinvertebrate functional measures (functional guilds, composition and abundance measures, sensitivity and tolerance measures, diversity measures) for detecting the impact of hydromorphological stress at different spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号