首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
蛋白质分子中酪氨酸残基的可逆性磷酸化作为真核生物信号转导的一个重要组成部分,参与了多种细胞功能调节,包括细胞增殖、迁移以及细胞间相互作用等。目前认为这种可逆性的磷酸化调节主要是受控于蛋白酪氨酸激酶(PTK)及蛋白酪氨酸磷酸酯酶(PTP)这两种酶活性的动态平衡。因此,与PTK一样,PTP对于体内各种生命活动起着非常重要的生物学作用。文章综述了近年来PTP在信号转导中的调控作用,特别是其在肿瘤发生、发展过程中的作用、以及其本身的结构与调控的研究进展。  相似文献   

2.
ErbB是与癌症有关的典型的受体酪氨酸激酶,正常情况下在器官发生过程中介导细胞间相互作用。ErbB信号转导途径是配基与单体受体酪氨酸激酶结合,通过受体二聚体化和酪氨酸残基的自磷酸化激活细胞质的催化功能,ErbB途径同时具有接收激素,神经转化因子和淋巴因子等的作用,其家族成员已有很多并仍有新的发现。  相似文献   

3.
目的:初步探讨甲壳胺诱导人肝癌Hep G2细胞凋亡的信号转导机制。方法:采用酶联免疫法,动态检测甲壳胺作用于Hep G2细胞后,细胞膜相及胞浆内的蛋白酪氨酸激酶(PTK)及蛋白酪氨酸磷酸酶(PTP)活性的变化。结果:甲壳胺可以抑制Hep G2细胞内的PTK活性,并呈一定的浓度依赖性;甲壳胺作用Hep G2细胞后,随着PTK活性的减弱,PTP的活性也短暂下降。结论:甲壳胺诱导Hep G2细胞凋亡时,涉及到PTK的活性改变。观察到膜相蛋白中PTK的活性改变早于胞浆蛋白,提示可能存在一个信号的跨膜转运过程;同时伴有PTP的活性变化,可能反映了胞内蛋白酪氨酸残基的磷酸化与去磷酸化即时调节机制。  相似文献   

4.
Jak—STAT信号转导机制   总被引:4,自引:0,他引:4  
许多细胞因子受体尽管缺少激酶结构域,但与配体结合后仍能诱导蛋白质的酪氨酸磷酸化。近年来的研究证明这一过程是由Jak族蛋白质酪氨酸激酶的成员所介导的。Jak激酶通过和受体的近膜区域的相互作用而与之缔合。配体结合引起受体聚合以及Jak的酪氨酸磷酸化和激活,激活的Jak又使受体和STAT蛋白(信号转导物与转录激活剂)磷酸化、后直接参与基因转录的调控。本对这一新的胞内信号转导机制作一综述。  相似文献   

5.
蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)催化蛋白质分子中特定位点的磷酸化酪氨酸残基脱磷酸,以"瀑布式的级联反应"方式与其他蛋白磷酸酶在细胞内构成调控网络,与蛋白酪氨酸激酶(protein tyrosine kinase,PTK)的作用相反,共同凋节细胞信号转导,在细胞生长、分化、引导有丝分裂、T细胞活化等生理过程中起着重要的作用,尤其在控制细胞磷酸化酪氨酸水平上,蛋白酪氨酸磷酸酶起着高度特异性的积极作用,占据了生导地位.蛋白酪氨酸磷酸酶在人类基因组中主要由90个基因表达,分为4个家族.其催化位点的构象决定了它对可逆的氧化敏感.  相似文献   

6.
G蛋白偶联受体转激活酪氨酸激酶受体机制   总被引:1,自引:0,他引:1  
蒋明  郭卉  赵菡  周爱云  林昕  许婵娟  刘剑峰 《现代生物医学进展》2011,(Z1):4767-4769,4771,4800
G蛋白偶联受体(G-protien coupled receptors,GPCRs)和酪氨酸激酶受体(receptor tyrosine kinases,RTKs)是体内两类重要的受体家族,介导着绝大多数信号事件。GPCRs能够"绑架"RTKs进行信号转导,即GPCRs能够在没有外加RTKs配体的情况下激活RTKs,这种现象称为转激活。作为转激活的核心过程,GPCR调控RTK磷酸化主要采取RTK配体依赖模式和非RTK配体依赖模式。不同的G蛋白亚型、酪氨酸磷酸激酶、酪氨酸磷酸酶(protein-tyrosine phosphatases,PTPs)以及活性氧自由基(reactiveoxygen species,ROS)均在此过程中具有重要作用。GPCR和RTK还能形成信号复合体(signaling complex)从而实现蛋白质之间的动态相互作用。对转激活的研究为GPCR靶点药物开发提供了新思路。  相似文献   

7.
蛋白质分子中酪氨酸残基可逆性的磷酸化是细胞内信号分子传导的基本方式。两类作用相反的酶参与磷酸化的调节:蛋白酪氨酸激酶(protein tyrosinekinase,PTK)和蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)。含脯氨酸-谷氨酸-丝氨酸-苏氨酸(P-E-S-T)结构域的蛋白酪氨酸磷酸酶(PTP-PEST)属于非受体型酪氨酸磷酸酶类,其本身能与多种蛋白质相互作用,并在细胞迁移、免疫细胞活化和胚胎发育等生理过程中发挥重要作用。本文对PTP-PEST的结构特点、生理功效、介导的信号传导途径和近年来PTP-PEST在疾病中的作用作一综述。  相似文献   

8.
受体酪氨酸激酶家族是一类具有内源性蛋白酪氨酸激酶活性的生长因子受体。它们具有相似的分子结构,其配体介导的受体活化主要是通过二聚化的机制来实现的。配体介导同源或异源的受体二聚化,不同的配体以不同的机制介导受体的二聚化。本文介绍了受体酪氨酸激酶家族不同亚类受体在其配体介导下二聚化的机制,并着重介绍了表皮生长因子受体家族各成员间的异二聚化及其引起的胞内信号转导途径的多样化。  相似文献   

9.
二聚化:受体酪氨酸激酶活化的重要机制   总被引:1,自引:0,他引:1  
受体酪氨酸激酶家族是一类具有内源性蛋白酪氨酸激酶活性的生长因子受体。它们具有相似的分子结构 ,其配体介导的受体活化主要是通过二聚化的机制来实现的。配体介导同源或异源的受体二聚化 ,不同的配体以不同的机制介导受体的二聚化。本文介绍了受体酪氨酸激酶家族不同亚类受体在其配体介导下二聚化的机制 ,并着重介绍了表皮生长因子受体家族各成员间的异二聚化及其引起的胞内信号转导途径的多样化  相似文献   

10.
获能期间精子蛋白的酪氨酸磷酸化   总被引:2,自引:0,他引:2  
周思畅  倪崖  石其贤 《生命科学》2006,18(3):285-289
哺乳动物精了获能是精子与卵子成功受精的前提。蛋白酪氨酸磷酸化对精子获能十分重要。精了获能期蛋白酪氨酸磷酸化程度增高与sAC/cAMP/PKA途径、受体酪氨酸激酶途径和非受体蛋白酪氨酸激酶途径调节有关。获能过程中酪氨酸磷酸化蛋白分布于精子细胞的不同区域,蛋白的酪氨酸磷酸化与精子功能密切相关。  相似文献   

11.
Hantaviruses infect human endothelial and immune cells, causing two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). We have identified key signaling elements termed immunoreceptor tyrosine-based activation motifs (ITAMs) within the G1 cytoplasmic tail of all HPS-causing hantaviruses. ITAMs direct receptor signaling within immune and endothelial cells and the presence of ITAMs in all HPS-causing hantaviruses provides a means for altering normal cellular responses which maintain vascular integrity. The NY-1 G1 ITAM was shown to coprecipitate a complex of phosphoproteins from cells, and the G1 ITAM is a substrate for the Src family kinase Fyn. The hantavirus ITAM coprecipitated Lyn, Syk, and ZAP-70 kinases from T or B cells, while mutagenesis of the ITAM abolished these interactions. In addition, G1 ITAM tyrosines directed intracellular interactions with Syk by mammalian two-hybrid analysis. These findings demonstrate that G1 ITAMs bind key cellular kinases that regulate immune and endothelial cell functions. There is currently no means for establishing the role of the G1 ITAM in hantavirus pathogenesis. However, the conservation of G1 ITAMs in all HPS-causing hantaviruses and the role of these signaling elements in immune and endothelial cells suggest that functional G1 ITAMs are likely to dysregulate normal immune and endothelial cell responses and contribute to hantavirus pathogenesis.  相似文献   

12.
The hantavirus G1 protein contains a long C-terminal cytoplasmic tail of 142 residues. Hantavirus pulmonary syndrome-associated hantaviruses contain conserved tyrosine residues near the C terminus of G1 which form an immunoreceptor tyrosine activation motif (ITAM) and interact with Src and Syk family kinases. During studies of the G1 ITAM we observed that fusion proteins containing the G1 cytoplasmic tail were poorly expressed. Expression of G1 cytoplasmic tail constructs were dramatically enhanced by treating cells with the proteasome inhibitor ALLN, suggesting that the protein is ubiquitinated and degraded via the 26S proteasome. By using a 6-His-tagged ubiquitin, we demonstrated that the G1 cytoplasmic tail is polyubiquitinated and degraded in the absence of proteasome inhibitors. Expression of only the ITAM-containing domain also directed protein ubiquitination and degradation in the absence of upstream residues. Deleting the C-terminal 51 residues of G1, including the ITAM, stabilized G1 and blocked polyubiquitination and degradation of the protein. Site-directed mutagenesis of both ITAM tyrosines (Y619 and Y632) to phenylalanine also blocked polyubiquitination of G1 proteins and dramatically enhanced G1 protein stability. In contrast, the presence of Y627, which is not part of the ITAM motif, had no effect on G1 stability. Mutagenesis of just Y619 enhanced G1 stability, inhibited G1 ubiquitination, and increased the half-life of G1 by threefold. Mutating only Y632 had less of an effect on G1 protein stability, although Y619 and Y632 synergistically contributed to G1 instability. These findings suggest that Y619, which is conserved in all hantaviruses, is the primary signal for directing G1 ubiquitination and degradation. Collectively these findings indicate that specific conserved tyrosines within the G1 cytoplasmic tail direct the polyubiquitination and degradation of expressed G1 proteins and provide a potential means for down-regulating hantavirus G1 surface glycoproteins and cellular proteins that interact with G1.  相似文献   

13.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is consistently identified in Kaposi’s sarcoma and body cavity-based lymphoma. KSHV encodes a transforming protein called K1 which is structurally similar to lymphocyte receptors. We have found that a highly conserved region of the cytoplasmic domain of K1 resembles the sequence of immunoreceptor tyrosine-based activation motifs (ITAMs). To demonstrate the signal-transducing activity of K1, we constructed a chimeric protein in which the cytoplasmic tail of the human CD8α polypeptide was replaced with that of KSHV K1. Expression of the CD8-K1 chimera in B cells induced cellular tyrosine phosphorylation and intracellular calcium mobilization upon stimulation with an anti-CD8 antibody. Mutational analyses showed that the putative ITAM of K1 was required for its signal-transducing activity. Furthermore, tyrosine residues of the putative ITAM of K1 were phosphorylated upon stimulation, and this allowed subsequent binding of SH2-containing proteins. These results demonstrate that the KSHV transforming protein K1 contains a functional ITAM in its cytoplasmic domain and that it can transduce signals to induce cellular activation.  相似文献   

14.
15.
16.
The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinases called AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases, which include PKA (cAMP-dependent protein kinase A), PKG (cGMP-dependent kinase) and PKC (protein kinase C). AGC kinases are also highly conserved and play a myriad of roles in cellular growth, proliferation and survival. The AGC kinases are regulated by a common scheme that involves phosphorylation of the kinase activation loop by PDK1 (phosphoinositide-dependent kinase 1), and phosphorylation at one or more sites at the C-terminal tail. The identification of two distinct TOR protein complexes, TORC1 (TOR complex 1) and TORC2, with different sensitivities to rapamycin, revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases. Together, these studies elucidated that a fundamental function of TOR conserved throughout evolution may be to balance growth versus survival signals by regulating AGC kinases in response to nutrients and environmental conditions. This present review highlights this emerging function of TOR that is conserved from budding and fission yeast to mammals.  相似文献   

17.
Tamalin is a scaffold protein that forms a multiple protein assembly including metabotropic glutamate receptors (mGluRs) and several postsynaptic and protein-trafficking scaffold proteins in distinct mode of protein-protein association. In the present investigation, we report that tamalin possesses a typical immunoreceptor tyrosine-based activation motif (ITAM), which enables Syk kinase to be recruited and phosphorylated by the Src family kinases. Coimmunoprecipitation analysis of rat brain membrane fractions showed that tamalin is present in a multimolecular protein assembly comprising not only mGluR1 but also c-Src, Fyn, and a protein phosphatase, SHP-2. The protein association of both tamalin and c-Src, as determined by truncation analysis of mGluR1 in COS-7 cells, occurred at the carboxyl-terminal tail of mGluR1. Mutation analysis of tyrosine with phenylalanine in COS-7 cells revealed that paired tyrosines at the ITAM sequence of tamalin are phosphorylated preferentially by c-Src and Fyn, and this phosphorylation can recruit Syk kinase and enables it to be phosphorylated by the Src family kinases. The phosphorylated tyrosines at the ITAM sequence of tamalin were highly susceptible to dephosphorylation by protein-tyrosine phosphatases in COS-7 cells. Importantly, tamalin was endogenously phosphorylated and associated with Syk in retinoic acid-treated P19 embryonal carcinoma cells that undergo neuron-like differentiation. The present investigation demonstrates that tamalin is a novel signaling molecule that possesses a PDZ domain and a PDZ binding motif and mediates Syk signaling in an ITAM-based fashion.  相似文献   

18.
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as FcϵRI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased FcϵRI-induced degranulation, nuclear factor for T cell activation and NFκB activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.  相似文献   

19.
Two members of the recently identified FcR homolog (FcRH) family in mice demonstrate preferential B cell expression. One of these, FcRH3, encodes a type I transmembrane protein with five extracellular Ig domains and a cytoplasmic tail with a consensus ITIM and a noncanonical ITAM. Analysis of full-length cDNAs from five different mouse strains defines two FcRH3 alleles. A panel of FcRH3-specific mAbs was generated to define its expression pattern and functional potential on B lineage cells. Although poorly detected on the majority of bone marrow or peripheral blood cells, FcRH3 was readily identified on splenic marginal zone (MZ) and MZ precursor B cells, but not on the bulk of newly formed B cells, follicular B cells, germinal center B cells, and plasma cells. In the peritoneal cavity, FcRH3 was found on B1 cells, and not on the majority of B2 cells. Consistent with its possession of an ITIM and ITAM-like sequence, FcRH3 was tyrosine phosphorylated following pervanadate treatment, and its coligation with the BCR inhibited calcium mobilization. These results suggest FcRH3 is a novel immunoregulatory marker of MZ and B1 B lineage cells.  相似文献   

20.
J H Mu  H S Lee    T H Kao 《The Plant cell》1994,6(5):709-721
From a pollen tube cDNA library of Petunia inflata, we isolated clones encoding a protein with structural features and biochemical properties characteristic of receptor-like kinases. It was designated PRK1 for pollen receptor-like kinase 1. The cytoplasmic domain of PRK1 is highly similar to the kinase domains of other plant receptor-like kinases and contains nearly all of the conserved amino acids for serine/threonine kinases. The extracellular domain of PRK1 contains leucine-rich repeats as found in some other plant receptor-like kinases, but overall its sequence in this region does not share significant similarity. Characterization of a gene encoding PRK1 revealed the presence of two introns. During pollen development, PRK1 mRNA was first detected in anthers containing mostly binucleate microspores; it reached the highest level of mature pollen and remained at a high level in in vitro-germinated pollen tubes. The recombinant cytoplasmic domain of PRK1 autophosphorylated on serine and tyrosine, suggesting that PRK1 may be a dual-specificity kinase. Monospecific immune serum to the recombinant extracellular domain of PRK1 detected a 69-kD protein in microsomal membranes of pollen and pollen tubes. The characteristics of PRK1 suggest that it may play a role in signal transduction events during pollen development and/or pollination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号