首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Arginine decarboxylase (ADC) catalyzes the first step of polyamine (PA) biosynthesis to produce putrescine (Put) from arginine (Arg). One of the 2 Arabidopsis ADC genes, AtADC2, is induced in response to salt stress causing the accumulation of free Put. To analyze the roles of stress-inducible AtADC2 gene and endogenous Put in stress tolerance, we isolated a Ds insertion mutant of AtADC2 gene (adc2-1) and characterized its phenotypes under salt stress. In the adc2-1 mutant, free Put content was reduced to about 25% of that in the control plants and did not increase under salt stress. Furthermore, the adc2-1 mutant was more sensitive to salt stress than the control plants. The stress sensitivity of adc2-1 was recovered by the addition of exogenous Put. These results indicate that endogenous Put plays an important role in salt tolerance in Arabidopsis. AtADC2 is a key gene for the production of Put under not only salinity conditions, but also normal conditions.  相似文献   

2.
The present work was conducted to evaluate the content of the main polyamines (Spm, Spd, Put) in a series of naturally aged durum-wheat seeds as well as the activities of the enzymes ODC and ADC involved in their biosynthesis. In dry seeds the content of polyamines, especially that of Spd, rose during ageing till 6 years and then declined sharply. However, an increase of PA content upon imbibition was observed only with the youngest seeds, while a decrease was found in the older ones. The activities of ODC and ADC differed in aged seeds, the ODC activity being constant and lower than the ADC in the course of seed ageing. The ADC increased till the early ageing and decreased then in the very old, ungerminating seeds. Imbibition increased both enzyme activities in the youngest seeds only, in the older ones rather a decrease and changed ADC/ODC ration was found. The obtained results are discussed in relation to the participation of these enzymes in the biosynthesis of polyamines during seed ageing and in the course of plant senescence or stress.  相似文献   

3.
In chick-pea ( Cicer arietinum L.) seed germinated in the presence of 14C-lysine, the latter is taken up and partly metabolised to cadaverine and TCA-precipitable molecules. Labelled cadaverine is detectable in seedlings only after 3 days, on a labelled lysine-containing medium, as confirmed also by the presence of lysine decarboxylase (LDC) activity, measured in the embryo axis and cotyledons of the seed and in the epicotyl, cotyledons, hypocotyl and roots of the seedling on the basis of 14CO2 evolution from the labelled precursor. Putrescine biosynthesis occurred only via arginine decarboxylase (ADC) activities in soaked seeds and via both ADC and ornithine decarboxylase (ODC) activities in seedlings. Both putrescine and cadaverine were present in soaked seed, and accumulated in very large amounts in the different portions of both 3- and 8-day-old seedlings, while spermidine and spermine titers were maintained at similar levels with respect to the seed. Diamine oxidase activity, measured by evaluating oxygen consumption in the presence of putrescine, was absent in ungerminated seed and appeared in 3- and 8-day-old seedlings. In order to clarify the metabolic relationships between cadaverine and the more common polyamines, gradients of biosynthesis, accumulation and degradation of putrescine and cadaverine along the seedling axis were compared, indicating that the two diamines behave similarly during seed germination and seedling development. Their conspicuous accumulation (up to 6 m M for putrescine) seems to be regulated mainly via oxidation rather than biosynthesis.  相似文献   

4.
5.
Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non‐infected wild‐type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid‐ and jasmonic acid‐dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen‐induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.  相似文献   

6.
7.
Unlike other eukaryotes, which can synthesize polyamines only from ornithine, plants possess an additional pathway from arginine. Occasionally non-enzymatic decarboxylation of ornithine could be detected in Arabidopsis extracts; however, we could not detect ornithine decarboxylase (ODC; EC 4. 1.1.17) enzymatic activity or any activity inhibitory to the ODC assay. There are no intact or degraded ODC sequences in the Arabidopsis genome and no ODC expressed sequence tags. Arabidopsis is therefore the only plant and one of only two eukaryotic organisms (the other being the protozoan Trypanosoma cruzi) that have been demonstrated to lack ODC activity. As ODC is a key enzyme in polyamine biosynthesis, Arabidopsis is reliant on the additional arginine decarboxylase (ADC; EC 4.1.1.9) pathway, found only in plants and some bacteria, to synthesize putrescine. By using site-directed mutants of the Arabidopsis ADC1 and heterologous expression in yeast, we show that ADC, like ODC, is a head-to-tail homodimer with two active sites acting in trans across the interface of the dimer. Amino acids K136 and C524 of Arabidopsis ADC1 are essential for activity and participate in separate active sites. Maximal activity of Arabidopsis ADC1 in yeast requires the presence of general protease genes, and it is likely that dimer formation precedes proteolytic processing of the ADC pre-protein monomer.  相似文献   

8.
Polyamine metabolism and its regulation   总被引:21,自引:1,他引:20  
  相似文献   

9.
The activities of arginine decarboxylase (ADC; EC 4.1.1.19) and ornithine decarboxylase (ODC; EC 4.1.1.17) as well as polyamine content were examined in Phaseolus vulgaris L. cv. Taylor's Horticultural before and during anthesis, during fruit development and throughout vegetative growth. The specific activities of polyamine biosynthetic enzymes were highest in all rapidly growing tissues, e.g., root apices, hypocotyls, young internodes, young leaves, flower buds, young pods and pericarps. They were lowest in mature, non-growing tissues. Similarly, the content of the major polyamines (putrescine, spermidine, spermine) is highest in rapidly growing tissues, and lowest in mature tissue. These correlations reinforce the growing connection between polyamines and rates of cell division and metabolic activity during both vegetative and reproductive development.  相似文献   

10.
11.
In this review we will focus on two areas in which the accumulated evidence for a critical physiological role of polyamines is becoming compelling, i.e. reproductive activity and response to abiotic stress. Regarding reproductive behavior, it seems clear that polyamines are members of the array of internal compounds required for flower initiation, normal floral organ morphogenesis, fruit growth and fruit ripening in particular plant species. Abiotic stresses such as osmotic stress can “turn on” arginine decarboxylase (ADC) genes, resulting in a rapid increase in their mRNA levels. Localization of ADC enzyme in the chloroplast suggests a role of PAs in the maintenance of photosynthetic activity during senescence responses induced by osmotic stress. We envisage that the use of transgenic plants and improved molecular probes will resolve in the near future the physiological significance of stress-induced changes in PA metabolism as well as the role of these compounds in reproductive activity.  相似文献   

12.
Biosynthesis of polyamines in plants is controlled primarily by the enzymes ornithine decarboxylase (EC 4.1.1.17) and arginine decarboxylase (ADC: EC 4.1.1.19), which are responsible for the production of putrescine, and S -adenosyl-L-methionine (SAM) decarboxylase (EC 4.1.1.50) that is necessary for the formation of spermidine and spermine (Spm). Little is known about the metabolic or molecular mechanisms regulating the synthesis of these enzymes. We have studied the regulation of ADC synthesis by Spm in osmotically-stressed oat ( Avena sativa L. ev. Victory) leaves, using a polyclonal antibody to oat ADC and a cDNA clone encoding oat ADC. Treatment with Spm in combination with osmotic stress resulted in increased steady-state levels of ADC mRNA, yet the levels of ADC activity decreased. This absence of correlation is explained by the fact that Spm inhibits processing of the ADC proenzyme, which results in increased levels of this inactive ADC form and a consequent decrease in the ADC-processed form. Spermine treatment leads to delayed loss of chlorophyll in dark-incubated and osmotically-treated oat leaves. Thus, post-translational regulation of ADC synthesis by Spm may be important in explaining its anti-senescence properties.  相似文献   

13.
Putrescine, spermidine and spermine of high vigour, low vigour and non-viable (classes 1, 2 and 3 respectively) seeds of Oryza sativa increased with loss of viability. The largest concentration of spermine was found in non-viable embryos. Spermine was absent in the husks of all the three categories of seeds. Arginine decarboxylase was greatest in high vigoured seeds and its activity gradually declined with loss of viability. However, diamine oxidase and polyamine oxidase activities gradually increased with the loss of viability of the seeds while DNA, RNA and protein contents decreased. The total content of polyamines increased on kinetin treatment but declined on ABA treatment. DNA, RNA and protein followed the same trend as polyamines. The polyamine contents increased by ca 3- and 4-fold, respectively, in high vigoured and low vigoured seeds on 10?4 M kinetin treatment. The activity of ADC followed the same change as that of the polyamines in both cases, but the reverse was observed for the activities of diamine and polyamine oxidases.  相似文献   

14.
15.
Epigenetic phenomena have been associated with modifications of chromatin structure. These are achieved, in part, by histone post-translational modifications including acetylations and deacetylations, the later being catalyzed by histone deacetylaces (HDACs). Eukaryotic HDACs are grouped into three major families, RPD3/HDA1, SIR2 and the plant-specific HD2. HDAC genes have been analyzed from model plants such as Arabidopsis , rice and maize and have been shown to be involved in various cellular processes including seed development, vegetative and reproductive growth and responses to abiotic and biotic stress, but reports on HDACs from other crops are limited. In this work two full-length cDNAs ( HvHDAC2-1 and HvHDAC2-2 ) encoding two members of the plant-specific HD2 family, respectively, were isolated and characterized from barley ( Hordeum vulgare ), an agronomically important cereal crop. HvHDAC2-1 and HvHDAC2-2 were mapped on barley chromosomes 1H and 3H, respectively, which could prove useful in developing markers for marker-assisted selection in breeding programs. Expression analysis of the barley HD2 genes demonstrated that they are expressed in all tissues and seed developmental stages examined. Significant differences were observed among tissues and seed stages, and between cultivars with varying seed size, suggesting an association of these genes with seed development. Furthermore, the HD2 genes from barley were found to respond to treatments with plant stress-related hormones such as jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA) implying an association of these genes with plant resistance to biotic and abiotic stress. The expression pattern of HD2 genes suggests a possible role for these genes in the epigenetic regulation of seed development and stress response.  相似文献   

16.
Despite the recent discovery that trehalose synthesis is widespread in higher plants very little is known about its physiological significance. Here we report on an Arabidopsis mutant (tps1), disrupted in a gene encoding the first enzyme of trehalose biosynthesis (trehalose-6-phosphate synthase). The tps1 mutant is a recessive embryo lethal. Embryo morphogenesis is normal but development is retarded and stalls early in the phase of cell expansion and storage reserve accumulation. TPS1 is transiently up-regulated at this same developmental stage and is required for the full expression of seed maturation marker genes (2S2 and OLEOSN2). Sucrose levels also increase rapidly in seeds during the onset of cell expansion. In Saccharomyces cerevisiae trehalose-6-phosphate (T-6-P) is required to regulate sugar influx into glycolysis via the inhibition of hexokinase and a deficiency in TPS1 prevents growth on sugars (Thevelein and Hohmann, 1995). The growth of Arabidopsis tps1-1 embryos can be partially rescued in vitro by reducing the sucrose level. However, T-6-P is not an inhibitor of AtHXK1 or AtHXK2. Nor does reducing hexokinase activity rescue tps1-1 embryo growth. Our data establish for the first time that an enzyme of trehalose metabolism is essential in plants and is implicated in the regulation of sugar metabolism/embryo development via a different mechanism to that reported in S. cerevisiae.  相似文献   

17.
Biogenic amines spermine (Spm) and spermidine (Spd) are essential for cell growth. Polyamine analogs are widely used to investigate the enzymes of polyamine metabolism and the functions of spermine and spermidine in vitro and in vivo. It was demonstrated recently that α-methylated derivatives of Spm and Spd are able to fulfill the key cellular functions of polyamines, moreover, in some cases, the effects of (R) and (S) isomers were actually different. Using these α-methylated analogs of Spm and Spd, it turned possible to prevent the development of acute pancreatitis in SSAT-transgenic rats with controllable expression of the Spm/Spd N1-acetyltransferase gene. The analogs made it possible to reveal dormant stereospecificity of polyamine oxidase, Spm oxidase, and deoxyhypusine synthase. An original approach was suggested to regulate the stereospecificity of polyamine oxidase. Depletion of the intracellular polyamine pool was found to have both hypusine-related consequences and consequences unrelated to posttranslational modification of the eukaryotic translation initiation factor eIF5A. Possible applications of a new family of C-methylated polyamine analogs for the investigation and regulation of polyamine metabolism in vitro and in vivo are discussed.  相似文献   

18.
Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.  相似文献   

19.
Salicylic acid (SA), which is known as a signal molecule in the induction of defense mechanisms in plants, could be a promising compound for the reduction of stress sensitivity. The aim of the present work was to investigate the distribution of SA in young pea (Pisum sativum L.) seedlings grown from seeds soaked in 3H-labeled SA solution before sowing, and to study the physiological changes induced by this seed treatment. The most pronounced changes in SA levels occurred in the epicotyl and the seeds. Radioactivity was detected only in the bound form of SA, the majority of which was localized in the seeds, and only a very low level of radioactivity was detected in the epicotyl. SA pre-treatment increased the expression of the chorismate synthase and isochorismate synthase genes in the epicotyl. Pre-soaking the seeds in SA increased the activities of some antioxidant enzymes, namely ascorbate peroxidase (EC 1.11.1.11) and guaiacol peroxidase (EC 1.11.1.7) and the level of ortho-hydroxycinnamic acid, but decreased the level of polyamines. These results suggest that the increased level of free and bound SA detected in plants growing from seeds soaked in SA solution before sowing is the product of de novo synthesis, rather than having been taken up and mobilized by the plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号