首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

2.
The tetrasaccharide 2-(p-trifluoroacetamidophenyl)ethylO-α-l-fucopyranosyl-(1–3)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1–3)-O-β-d-galactopyranosyl-(1–4)-β-d-glucopyranoside was synthesized from thioglycoside intermediates. The key step was a methyl triflate promoted glycosidation of a lactose-derived 3′,4′-diol with a disaccharide thioglycoside to give a β(1–3)-linked tetrasaccharide derivative in 67% yield.  相似文献   

3.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

4.
A deficiency in chondroitin N-acetylgalactosaminyltransferase-1 (ChGn-1) was previously shown to reduce the number of chondroitin sulfate (CS) chains, leading to skeletal dysplasias in mice, suggesting that ChGn-1 regulates the number of CS chains for normal cartilage development. Recently, we demonstrated that 2-phosphoxylose phosphatase (XYLP) regulates the number of CS chains by dephosphorylating the Xyl residue in the glycosaminoglycan-protein linkage region of proteoglycans. However, the relationship between ChGn-1 and XYLP in controlling the number of CS chains is not clear. In this study, we for the first time detected a phosphorylated tetrasaccharide linkage structure, GlcUAβ1–3Galβ1–3Galβ1–4Xyl(2-O-phosphate), in ChGn-1−/− growth plate cartilage but not in ChGn-2−/− or wild-type growth plate cartilage. In contrast, the truncated linkage tetrasaccharide GlcUAβ1–3Galβ1–3Galβ1–4Xyl was detected in wild-type, ChGn-1−/−, and ChGn-2−/− growth plate cartilage. Consistent with the findings, ChGn-1 preferentially transferred N-acetylgalactosamine to the phosphorylated tetrasaccharide linkage in vitro. Moreover, ChGn-1 and XYLP interacted with each other, and ChGn-1-mediated addition of N-acetylgalactosamine was accompanied by rapid XYLP-dependent dephosphorylation during formation of the CS linkage region. Taken together, we conclude that the phosphorylated tetrasaccharide linkage is the preferred substrate for ChGn-1 and that ChGn-1 and XYLP cooperatively regulate the number of CS chains in growth plate cartilage.  相似文献   

5.
Transforming growth factor β-activated protein kinase 1 (TAK1)-binding protein 2 (TAB2) and its close homolog TAB3 are initially characterized as adapter proteins essential for TAK1 activation in response to interleukin-1β and tumour necrosis factor-α. However, the physiological roles of TAB2 and TAB3 are still not fully understood. Here we report that TAB2 and TAB3 bind to Beclin1 and colocalize in the cytoplasm. TAB2 also interacts with ATG13 and is phosphorylated by ULK1. Overexpression of TAB2 or TAB3 induces punctate localization of ATG5 under the normal culture condition. Knockdown of TAB2 and TAB3 results in the decrease in endogenous protein level of p62/SQSTM1 under the normal culture condition, while overexpression of TAB2 results in the accumulation of p62/SQSTM1 independently of TAK1. The decrease of p62/SQSTM1 induced by the knockdown of TAB2 and TAB3 is largely dependent on ATG5. These results suggest that TAB2 and TAB3 negatively regulate autophagy independently of TAK1 activity.  相似文献   

6.
Abstract

The reaction of the 2′,3′-lyxoepoxide (1) with ammonium azide gives two products; namely, the 3′-arabino azide (2a) and in low yield 2′-xylo azide (3a). After debenzoylation and reduction the resulting mixture of amines was resolved by chromatography on a weak cation exchanger, Amberlite IRC-50, and afforded crystalline 1-(3-amino-3-deoxy-β-D-arabinofuranosyl)uracil (2c) and 1-(2-amino-2-deoxy-β-D-xylofuranosyl)uracil (3c) in the ratio of 4:1.  相似文献   

7.
8.
Abstract

The synthesis of new 4- and 5-substituted-3-cyanopyridine nucleosides has been performed by reacting the silylated pyridines and penta-O-acetyl-α -D-glycopyranose in dichloroethane in the presence of SnCl4. The free nucleosides were tested for their potential activity against HIV and different types of tumor.  相似文献   

9.
Stereo- and regio-selective synthesis of 3-O-(2-acetamido-2-deoxy-3-O-β-d- galactopyranosyl-β-d-galactopyranosyl)-1,2-di-O-tetradecyl-sn-glycerol by use of 1,2-di-O-tetradecyl-3-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-sn-glycerol as a key intermediate is described.  相似文献   

10.
(1–3)--d-Glucan synthase activity ofNeurospora crassa was localized to the plasma membrane by autoradiography of colloidal gold-labeled plasma membranes. The active site of glucan synthase for substrate hydrolysis was determined to be cytoplasmic facing. However, glucan synthase activity present in intact protoplasts was partially sensitive to Novozym 234 and to glutaraldehyde treatments, suggestive that enzyme activity is transmembrane. Enzyme activity also directed the formation of microfibrils in vitro. Taken together, these and previous results support the following scheme for glucan synthesis: 1. The sequential addition of glucose residues from UDP-glucose to glucan chains occurs on the cytoplasmically facing portion of glucan synthase. 2. As each glucan chain is synthesized, it is extruded to the extracytoplasmic side of the plasma membrane. 3. As each chain is extruded, it forms interchain hydrogen bonds with adjacent chains, resulting in glucan microfibril assembly.  相似文献   

11.
Abstract

2-(3-Deoxy-β-D-erythropentofuranosyl)-thiazole-4-carboxamide was synthesized in four steps from its β-D-ribofuranosyl nucleoside precursor.  相似文献   

12.
Abstract

1-β-L-Arabinofuranosylcytosine (β-L-Ara-C, 7) and 2′-deoxy-2′-methylene-β-L-cytidine (β-L-DMDC, 14) have been synthesized via a multi-step synthesis from L-arabinose. These compounds were tested in vitro against L1210, P388, Sarcoma 180, and CEM cells, and found not to be active at a concentration up to 100 μM. β-L-Ara-C and β-L-DMDC were also tested against HSV-1 and HSV-2 and yielded ID50 values of 100 μM.  相似文献   

13.
Synthesis and clusterization of Galβ(1→3)[NeuAcα(2→6)]GlcNAcβ(1→2)Man motif of the N-glycan, as the molecular probes for their biological evaluation, are reported. Key step is the quantitative and the completely α-selective sialylation of the C5-azide N-phenyltrifluoroacetimidate with the disaccharide acceptor, Galβ(1→3)GlcNTroc. Clusterization of the 16 molecules of trisaccharide motif was also achieved by the ‘self-activating click reaction’. These probes could efficiently be labeled by biotin and/or other fluorescence- or radioactive reporter groups through either cross metathesis, acylation, Cu(I)-mediated Huisgen [2+3]-cycloaddition, or the azaelectrocyclization to utilize the various biological techniques.  相似文献   

14.
15.
Three structural classes of (13)--d-glucans are encountered in some important soil-dwelling, plant-associated or human pathogenic bacteria. Linear (13)--glucans and side-chain-branched (13,12)--glucans are major constituents of capsular materials, with roles in bacterial aggregation, virulence and carbohydrate storage. Cyclic (13,16)--glucans are predominantly periplasmic, serving in osmotic adaptation. Curdlan, the linear (13)--glucan from Agrobacterium, has unique rheological and thermal gelling properties, with applications in the food industry and other sectors. This review includes information on the structure, properties and molecular genetics of the bacterial (13)--glucans, together with an overview of the physiology and biotechnology of curdlan production and applications of this biopolymer and its derivatives.  相似文献   

16.
The aim of this preliminary study was to assess exposure to β(1 → 3)-glucan as well as inhalable dust and viable fungi in different occupational environments. The study was conducted in three different industrial plants: metal plant where metalworking fluids were applied, wastewater treatment plant, and waste composting plant. In selected points simultaneously the stationary air sampling was performed to evaluate the levels of inhalable dust, β(1 → 3)-glucan, and to make a quantitative analysis of airborne fungi. All variables describing the exposure were characterized by a wide range of concentrations. The results were as follows: β(1 → 3)-glucan (1.38–65.1 ng/m3), inhalable dust (0.03–2.93 mg/m3), and fungi (0.16–285 × 102 CFU/m3). The highest concentrations for all parameters were found in the composting plant. In the composting plant, a statistically significant correlation was found between β(1 → 3)-glucan and fungal levels (r = 0.89; p < 0.05). In the metal industry and composting plant, the participation of alkali-soluble fraction was stable, exceeding 90% of all β(1 → 3)-glucan. However, in the wastewater treatment plant, its average amount was much lower—73.6%. The study showed that β(1 → 3)-glucan was present in different occupational environments and it should be taken into consideration as an important part of bioaerosols. However, more studies are required to assess the concentration levels as well as all determinants of exposure.  相似文献   

17.
A truncated form of the Agouti‐related protein (AgRP), a member of the cystine‐knot family, has shown promise as a scaffold for engineering novel peptides with new molecular recognition properties. In this study, we replaced a constrained six amino acid loop in AgRP with a nine amino acid loop containing an Arg–Gly–Asp integrin recognition motif, and randomized the neighboring residues to create a library of ~20 million AgRP variants. We displayed the AgRP mutants as fusions on the surface of yeast and used high‐throughput fluorescence‐activated cell sorting (FACS) to isolate peptides that bound specifically to the platelet integrin αIIbβ3, a clinically important target for the prevention and treatment of thrombosis. These AgRP peptides had equilibrium dissociation (KD) constants for αIIbβ3 integrin ranging from 60 to 90 nM, and did not bind to αvβ3, αvβ5, or α5β1 integrins. Using an alternate library screening strategy, we identified AgRP peptides that bound to both αIIbβ3 and αvβ3 integrins with KD values ranging from 40 to 70 nM and 20 to 30 nM, respectively, and did not bind to αvβ5 or α5β1 integrins. Unique consensus sequences were identified within both series of AgRP peptides suggesting alternative molecular recognition events that dictate different integrin binding specificities. In addition, the engineered AgRP peptides prevented platelet aggregation as well as or slightly better than the FDA‐approved cyclic peptide eptifibatide. Collectively, these data demonstrate that cystine‐knot peptides can be generated with high affinity and specificity to closely‐related integrins, and provide insights into molecular interactions between small, structured peptide ligands and their receptors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
《Carbohydrate research》1985,140(2):299-311
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β-d-galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-d-galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α-d-galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

19.
Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca(2+) mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号