首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
4.
The mouse liver revealed no increased incorporation of [14C]-orotic acid into either the total acid-soluble fraction, the uridine triphosphate or the RNA at 6 and 24 h after partial hepatectomy. In regenerating mouse and rat liver, the concentration of adenosine triphosphate was decreased 15-20% at 6 h, but was in the same range as that of the controls at 24 h. The adenosine monophosphate concentration of mouse liver increased 4-fold and 2-fold at these times after partial hepatectomy, respectively. The results indicate no direct relationship between the energy metabolism and the uptake and incorporation of orotic acid into RNA of regenerating liver. The activity of mouse plasma lactate dehydrogenase 5 (LDH 5) was increased 12-fold at 6 h and 5-fold at 24 h after partial hepatectomy. In rat, the LDH 5 activity was increased 2-fold at 6 h but was not different from that of the controls at 24 h. An increased leakage of LDH 5, possibly related to the decreased energy content of the liver, was thus revealed by the partially hepatectomized mice.  相似文献   

5.
Cell-CAM 105 is an integral cell surface glycoprotein that is involved in cell-cell adhesion of adult rat hepatocytes in vitro. In the present report we used a radio-immunoassay, a quantitative immunoblotting technique and immunofluorescence microscopy to investigate the expression of cell-CAM 105 in fetal and regenerating rat liver. In the fetal liver cell-CAM 105 did not appear until day 16 of the gestation, when it increased rapidly to reach the level found in adult liver, 3 weeks after birth. In liver regenerating after partial hepatectomy a transient decrease in the amount of cell-CAM 105 was observed in the plasma membranes of the hepatocytes. A significant decrease was observed as early as 12 h after partial hepatectomy, reaching a minimum by 3 days after the operation, corresponding to approx. 35% of the amount of cell-CAM 105 in normal liver. The amount then increased slowly and was back to the normal level by about 15 days after partial hepatectomy. The results indicate that cell-CAM 105 exerts its major function in terminally differentiated cells. An excellent correlation was seen between the kinetics of the expression of cell-CAM 105 and of reported changes of both enzymatic and organizational patterns of hepatocytes in regenerating and fetal liver. This suggests that cell-CAM 105 could be important for the development and maintenance of the cell-cell binding and organizational pattern characteristic of terminally differentiated hepatocytes.  相似文献   

6.
Hepatocyte Growth Factor (HGF) is a potent complete mitogen for primary cultures of hepatocytes in vitro. There is strong evidence that this novel growth factor may mediate hepatocyte regeneration after liver damage. We have shown previously that the amount of immunoreactive HGF markedly increases in the serum of rats soon after partial hepatectomy or CCl4 administration. In the present paper, we demonstrate that the level of HGF mRNA in rat liver also dramatically increases from 3 to 6 hours post hepatectomy, peaks at 12 hr and gradually returns to undetectable levels by 72 to 96 hours post hepatectomy. In separate experiments, DNA synthesis (in vivo) was determined in rat liver remnants after partial hepatectomy. DNA synthesis peaked 24 hr after hepatectomy, 12 hr after the peak of HGF mRNA expression. These results suggest that HGF may be one of the major early signals that triggers hepatocyte proliferation during liver regeneration.  相似文献   

7.
Nicotinamide nucleotide synthesis in regenerating rat liver   总被引:1,自引:1,他引:0  
1. The concentrations and total content of the nicotinamide nucleotides were measured in the livers of rats at various times after partial hepatectomy and laparotomy (sham hepatectomy) and correlated with other events in the regeneration process. 2. The NAD content and concentration in rat liver were relatively unaffected by laparotomy, but fell to a minimum, 25 and 33% below control values respectively, 24h after partial hepatectomy. NADP content and concentration were affected similarly by both laparotomy and partial hepatectomy, falling rapidly and remaining depressed for up to 48h. 3. The effect of injecting various doses of nicotinamide on the liver DNA and NAD 18h after partial hepatectomy was studied and revealed an inverse correlation between NAD content and DNA content. 4. Injections of nicotinamide at various times after partial hepatectomy revealed that the ability to synthesize NAD from nicotinamide was impaired during the first 12h, rose to a peak at 26h and fell again by 48h after partial hepatectomy. 5. The total liver activity of NAD pyrophosphorylase (EC 2.7.7.1) remained at or slightly above the initial value for 12h after partial hepatectomy and then rose continuously until 48h after operation. The activity of NMN pyrophosphorylase (EC 2.4.2.12) showed a similar pattern of change after partial hepatectomy, but was at no time greater than 5% of the activity of NAD pyrophosphorylase. 6. The results are discussed with reference to the control of NAD synthesis in rapidly dividing tissue. It is suggested that the availability of cofactors and substrates for NAD synthesis is more important as a controlling factor than the maximum enzyme activities. It is concluded that the low concentrations of nicotinamide nucleotides in rapidly dividing tissues are the result of competition between NAD synthesis and nucleic acid synthesis for common precursor and cofactors.  相似文献   

8.
To explore the possible role of gap junctions in neural regulation of hepatic glucose metabolism, the effects of hepatic nerve stimulation on metabolic and hemodynamic changes were examined in normal and regenerating rat liver which was perfused in situ at constant pressure via the portal vein with a medium containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1. The content of connexin 32, a major component of gap junctions in rat liver, decreased transiently to about 25% of the control level in regenerating liver 48-72 h after partial hepatectomy and recovered to normal by the 11th day after the operation. 2. In normal liver, electrical stimulation of the hepatic nerves (10 Hz, 20 V, 2 ms) and infusion of noradrenaline (1 microM) both increased glucose and lactate output and reduced perfusion flow. 3. In early stage of regenerating liver 48 h and 72 h after partial hepatectomy, the increase in glucose output in response to nerve stimulation was almost completely inhibited, whereas the change in lactate balance was partially suppressed and the reduction of flow rate was retained. The response of glucose output to nerve stimulation recovered by the 11th day after partial hepatectomy. In contrast, exogenous application of noradrenaline increased glucose output even in the early stage of regenerating liver. 4. The increase in noradrenaline overflow during hepatic nerve stimulation in the early stage of regenerating liver was approximately the same as in normal liver. Liver glycogen was sufficiently preserved in the early stage of regenerating liver. However, noradrenaline infusion could no more increase glucose output both in normal and in regenerating livers after 24 h of fasting that depleted liver glycogen. These results suggest that the impaired effects of sympathetic nerve stimulation on glucose metabolism observed in regenerating liver are derived neither from reduced release of noradrenaline nor from depletion of liver glycogen, but rather from transient reduction of gap junctions which assist signal propagation of the nerve action through intercellular communication in rat liver.  相似文献   

9.
The biological importance of histone H1 was investigated in relation to the cell cycle using liver regeneration in rat. Histone H1 was extracted from the regenerating rat liver at various intervals after partial hepatectomy and the number of phosphate residues was measured. The inhibitory effect of the extracted histone H1 on DNA primase was assayed. The activities of DNA polymerase-alpha, DNA primase and DNA synthesis were also determined in the regenerating rat liver. It was found that: 1) phosphate residue in histone H1 from normal rat liver was between 2-3 mol/mol of histone H1. 2) The number of phosphate residues did not change for the first 16h after partial hepatectomy. 3) A dramatic sudden increase of phosphate residues was detected at 18h after partial hepatectomy. 4) The high levels of phosphate residues remained constant thereafter up to 50h. 5) DNA primase activity was less inhibited by highly phosphorylated than by slightly phosphorylated histone H1. It seems probable that phosphorylation of histone H1 is needed for the releasing of DNA primase activity from its inhibited state, which would start DNA synthesis together with DNA polymerase-alpha.  相似文献   

10.
Reduction in the number of nucleoli/nucleus and increase in their size were usually observed in rat liver after partial hepatectomy. These changes of nucleoli were greatest 16–18 h after the operation, when RNA biosynthesis in the nucleoli is reported to be highest. Approx. 50% of the nuclei had one enlarged nucleolus at this time but after the increase in nuclear DNA synthesis less than 15% of the nuclei had one nucleolus, as in normal liver. Before the next peak of nuclear DNA synthesis, nucleolar changes appeared again, though less conspicuously.The enlarged nucleoli of regenerating liver were separated from smaller ones by discontinuous sucrose gradient centrifugation and the contents of nucleic acid and ribosomal cistrons in different-sized nucleoli were measured. The large nucleoli in regenerating liver were found to have increased DNA content, whereas smaller ones had the normal content. The total number of ribosomal cistrons in the enlarged nucleoli from regenerating liver was also increased roughly in proportion to the DNA content. No significant difference was found between the percentages of ribosomal cistrons in whole nuclear DNAs from regenerating and normal liver. Small but reproducible [3H]TdR incorporation into nucleolar DNA was observed and this was similar in normal liver and regenerating liver 12 h after partial hepatectomy. Therefore, the nucleolar changes in regenerating liver were not accompanied by any particular DNA synthesis in the nucleolus itself. These results suggest that in the nuclei of regenerating liver nucleolar chromatins may be redistributed and assembled into large nucleoli, rather than that any amplification of ribosomal cistrons occurs.  相似文献   

11.
IMP dehydrogenase (EC 1.2.1.14) was purified 180-fold from rat liver and from the transplantable rat hepatoma 3924A. The enzymes from the two sources were apparently identical; they exhibited hyperbolic saturation kinetics and an ordered, sequential mechanism, and were subject to inhibition by a number of purine nucleotides. Km values for the substrates, IMP and NAD+, were 12 and 24 micrometer respectively. IMP dehydrogenase activity in a spectrum of rat hepatomas was increased, relative to normal liver, by 2.5--13-fold; these increases correlated with tumour growth rate. Activity in two rat kidney tumours was increased 3-fold relative to that in normal renal cortex; control of activity of this enzyme is apparently altered in neoplastic cells. After partial hepatectomy, IMP dehydrogenase activity began to rise 6 h after operation, reaching a peak of 580% of normal activity by 18 h. Activity in neonatal liver, however, was only slightly higher than that in the adult. Organ-distribution studies showed highest enzyme activities in spleen and thymus. In livers of rats starved for 3 days, where all enzymes, except those involved in gluconeogenesis, showed decreased activity IMP dehydrogenase activity was increased; this change was accompanied by a rise in hepatic GTP concentrations. It is concluded that IMP dehydrogenase is a key enzyme in the regulation of GTP production, and thus involved in regulation of nucleic acid biosynthesis. The increased activity of IMP dehydrogenase in liver of starved rats may be related to the requirements for GTP for gluconeogenesis.  相似文献   

12.
Using the experimental model of partial hepatectomy in the rat, we have examined the relationship between cell division and lipid peroxidation activity. In rats entrained to a regime of 12 h light/12 h dark and with a fixed 8 h feeding period in the dark phase, partial hepatectomy is followed by a rapid regeneration of liver mass with cycles of synchronized cell division at 24 h intervals. The latter phenomenon is indicated in this study by pulses of thymidine kinase activity having maxima at 24 h, 48 h and 72 h after partial hepatectomy. Microsomes prepared from regenerating livers show changes in lipid peroxidation activity (induced by NADPH/ADP/iron or by ascorbate/iron), which is significantly decreased relative to that in microsomes from sham-operated controls, again at 24 h, 48 h and 72 h after the operation. This phenomenon has been investigated with regard to possible underlying changes in the content of microsomal fatty acids, the microsomal enzymes NADPH:cytochrome c reductase and cytochrome P-450, and the physiological microsomal antioxidant alpha-tocopherol. The cycles of decreased lipid peroxidation activity are apparently due, at least in part, to changes in microsomal alpha-tocopherol content that are closely associated in time with thymidine kinase activity.  相似文献   

13.
When hepatocyte proliferation is stimulated in the liver by partial hepatectomy, messenger RNAs coding for fibrinogen, actin, c-myc and topoisomerase I are rapidly accumulated. We distinguish an early phase of accumulation (0-3 h after partial hepatectomy) which is also observed after a sham operation for the four genes, and during inflammation produced by Freund's adjuvant in the case of fibrinogen and c-myc genes. The hepatic response to inflammation appears therefore to mimic events characteristic of the G0/G1 transition, such as the accumulation of the c-myc mRNA. The late phase of mRNA accumulation (beyond 3 h after partial hepatectomy) is typical of liver regeneration. The level of c-myc mRNA is transiently increased (20-fold over normal) 20 h after partial hepatectomy, that is, at the time of DNA synthesis. Topoisomerase-I mRNA level increases between 3 and 24 h after partial hepatectomy (5-10-fold over normal). These results suggest that accumulation of c-myc and topoisomerase-I mRNAs is associated with DNA replication in regenerating liver.  相似文献   

14.
A 569 bp probe against the β-chain of hepatotropin was used to examine expression of RNA for this growth factor in human adult and foetal liver, foetal kidney and pancreas, and rat liver after partial hepatectomy. Low level expression of a 6kb RNA occurred in human adult and normal rat liver. 70% hepatectomy increased expression, peaking at 10 h and returning to near normal levels 24 h after resection. The 6 kb band was strongly expressed in human foetal liver, as compared with adult, but not in foetal kidney or pancreas, suggesting a major role for hepatotropin in both foetal development and regeneration of the liver.  相似文献   

15.
A cell-surface modulator of DNA synthesis by cultured rat hepatocytes was studied in relation to the liver regeneration process. When rat hepatocytes isolated 24 h after partial hepatectomy were cultured, the first burst of DNA synthesis peaked at 5-8 h and declined until 24 h, followed by the second burst. Rat liver plasma membranes added 2 h after plating inhibited only the second burst, while in the case of the normal hepatocytes where the DNA synthesis began to increase after 5 h, this inhibition was observed at 16 h but not at 8 h. The inhibition did not differ when the membranes obtained from regenerating livers 12 h after partial hepatectomy were used. Epidermal growth factor binding to the cultured hepatocytes was not hindered by the membranes. These results suggest that the modulator inhibits hepatocyte proliferation at the early G1-phase of the cell cycle and that its action might be controlled by other factors in the process of liver regeneration.  相似文献   

16.
Poly(A)-containing RNA isolated from liver nuclei of untreated rats and 3 h or 12 h after partial hepatectomy or sham operation was hybridized to the complementary DNAs (cDNAs). In the homologous reactions two major components could be seen. When compared to normal liver, the complexity of the least abundant class was lower in nuclei from livers 3 h after partial hepatectomy and was higher in those isolated 12 h after operation. The heterologous reactions revealed an increase of some abundant poly(A)-containing sequences and a loss or dilution of rare sequences 3 h after operation. The latter effect was not specific to the regeneration process but occurred after laparotomy as well. 12 h after partial hepatectomy, however, about 10% new poly(A)-containing sequences were detected, corresponding to about 5000 molecules of 4500 nucleotides length, which are unique to regenerating nuclei.  相似文献   

17.
Incorporation of [3H]orotic acid into low-molecular-weight nRNA of rat liver, fractionated on polyacrylamide gels, increased 6-12h after partial hepatectomy and 6h after gamma-irridation at 2000 R. The incorporation of orotic acid was particularly increased into the 4.5S, 5S and approx. 10S nRNA fractions. If the irradiation was given after 6h of regeneration and RNA was isolated from the nucleus 12h after hepatectomy then the incorporation of orotic acid into these low-molecular-weight nRNA components was greater than after hepatectomy or irradiation alone.  相似文献   

18.
19.
Hydroxyurea (HU) causes inhibition of DNA synthesis in regenerating rat liver due to an inhibition of the ribonucleotide reductase. We studied the consequences of a continuous HU infusion for deoxyribonucleoside triphosphate (dNTP) pools in the liver after partial hepatectomy and tried to modify imbalances by application of deoxyribonucleosides in vivo. In normal liver, an intracellular concentration of 0.16, 0.84, 0.33 and 0.27 pmol/micrograms DNA was observed for dATP, dCTP, dGTP and dTTP, respectively. In regenerating liver the dNTP pools show minor changes until 18 h after partial hepatectomy. During and after a continuous HU infusion 14--24 h after partial hepatectomy, the intracellular dNTP pools change considerably. At 19.5 h after partial hepatectomy, 5.5 h after the start of HU infusion, and at 25 h after partial hepatectomy, 1 h after termination of HU infusion, the dTTP pool was more than 10-times, and the dGTP pool about 2-times higher than in controls, while the dATP and dCTP pools remain relatively unchanged. Simultaneous infusion of HU and deoxythymidine (dThd) 14--25 h after partial hepatectomy results in a further increase of the dTTP pool during and after HU infusion. Administration of deoxycytidine (dCyd) leads to a moderate increase of the dCTP pool and a weak decrease of the dTTP pool during HU infusion. The combined application of dCyd and dThd after HU infusion had similar effects on dNTP pools as observed with dThd alone. These results show that intracellular pools of dNTPs in hepatocytes can be altered by exogenous factors in a controlled pattern. This system can be used as a model for studying the implications of induced dNTP pool dysbalances for the initiation of liver carcinogenesis by mutagenic chemicals.  相似文献   

20.
Riis B  Risom L  Loft S  Poulsen HE 《DNA Repair》2002,1(5):419-424
Rapidly proliferating tissue with synthesis of a large number of cellular macromolecules including DNA, may require enhanced DNA repair capacity in order to avoid fixation of promutagenic DNA lesions to mutations. This hypothesis was addressed by assessing the incision activity and the mRNA level of the DNA repair protein rat 8-oxodeoxyguanosine glycosylase (rOGG1) as well as the level of the oxidative stress biomarker 8-oxodeoxyguanosine (8-oxodG) in rat liver tissue before and after partial hepatectomy. A five-fold increase in rOGG1 expression was found at 24h after PHx relative to the control levels. At 48h the rOGG1 mRNA levels were reduced to three-times the control values. The corresponding incision activities of rOGG1 in the crude tissue extract as measured by the incision assay were slightly increased both at 24 and 48h after partial hepatectomy although the changes failed to be statistically significant (P=0.07 and 0.06, respectively). The levels of 8-oxodG were unaltered at 24h but increased to 1.8 times the control values at 48h after partial hepatectomy. The study showed that rapid proliferating liver tissue in vivo had an increased expression of the DNA repair protein rOGG1, without significantly increased incision activity on a 8-oxodG-containing substrate and with unchanged levels of 8-oxodG/10(6) dGuo after 24h of regeneration. At 48h the rOGG1 expression was decreased, and the levels of 8-oxodG/10(6) dGuo increased but still significant changes in the incision activity could not be detected. Thus, we can conclude that the rOGG1 expression is temporarily up-regulated by the proliferating events elicited by partial hepatectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号