首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雌雄异位和花部行为适应意义的研究进展   总被引:15,自引:0,他引:15       下载免费PDF全文
雌雄异位和花部行为影响植物的传粉和交配格局。二者的适应意义一直是植物生殖生态学和进化生物学研究的热点之一。该文概述了近年来雌雄异位和花部行为适应意义的研究进展,包括对雌雄异位适应意义的最早期、最传统的认识——避免自交和当前的主流观点——避免雌雄干扰;花内性别干扰的形式及其例证;花部行为在避免雌雄功能干扰、避免自交、实现延迟自交、应对不良环境等方面的适应意义。讨论了使雌雄异位程度减小的锦葵科一些植物中的单体雄蕊柱头运动可能涉及到的适应意义。针对目前在雌雄异位和花部行为适应意义研究上存在的不足,结合国际上研究二者适应意义的发展趋势正在从前期以描述性的研究为主转变到应用现代分子生物学手段(尤其是分子标记,如SSR、SNP、AFLP等)和传统方法相结合,以及随着田间实验和控制条件能力的发展正由经典的野外调查、观察为主过渡到包括花操纵在内的人工试验和野外试验相结合,提出了今后研究中应注意的问题。有必要借用多学科的手段,以可作为研究雌雄异位和花部行为的有着研究基础的植物为材料,设计和操纵不同的对比试验,系统而深入地探讨雌雄异位和花部行为的适应意义。  相似文献   

2.
The evolution of many floral traits, including monoecy and dichogamy, has been attributed to selection for avoidance of self-fertilization. If this explanation is correct, monoecy and dichogamy should be uncommon among self-incompatible species because physiological barriers prevent self-fertilization in such species. In fact, self-fertility was independent of sexual system in a sample of 588 hermaphroditic and monoecious angiosperms. Overall, dichogamy was also equally common among self-incompatible and self-compatible species. When the different forms of dichogamy were analyzed separately, only intrafloral protogyny was associated with self-compatibility. This form of dichogamy is less common among angiosperms than intrafloral protandry, which is probably less effective at reducing self-fertilization. Thus, avoidance of self-fertilization has probably been less important in the evolution of monoecy and most forms of dichogamy than other factors, such as avoidance of pollen-pistil interference, and flexibility of resource allocation to male and female functions.  相似文献   

3.
We hypothesize that floral features promoting pollen competition in angiosperms may have evolved, in some cases, in response to selection generated by the negative effects of inbreeding, at least in plants with mixed-mating systems. Screening of haploid genotypes through pollen competition may purge recessive (or additive) deleterious alleles that are expressed in haploid pollen and hence may reduce the fitness cost of self-pollination, geitonogamy, or biparental inbreeding. We tested one prediction of this hypothesis, that offspring produced by more intense competition among self-pollen have higher fitness than offspring produced by less intense competition. Dalechampia scandens (Euphorbiaceae) flowers were pollinated with pollen from other flowers on the same plant (geitonogamous self-fertilization). Those flowers experiencing more intense pollen competition as a result of low pollen dispersion (positional variance) on the stigma produced heavier seeds and seedlings with faster-growing radicles than flowers experiencing less intense pollen competition (high pollen dispersion), as predicted by our hypothesis.  相似文献   

4.
Spatial separation between sexes within hermaphrodite flowers (herkogamy) is widespread among angiosperms and is traditionally viewed as an adaptation that reduces the likelihood of self-pollination. While different degrees of herkogamy have been reported for Crocus, the relationship between sexual organ positions and reproductive fitness has not been explored yet, and studies of the breeding system within natural populations remain scarce within the genus. We analyzed the effects of different breeding systems (spontaneous self-pollination, facilitated self-pollination and cross-pollination) and of herkogamy degree on female reproductive success of the Tuscan endemic Crocus etruscus. Results showed that C. etruscus is monomorphic for style length and self-incompatible (SCI = 0.29). We also detected a significant negative effect of herkogamy on seed set of open-pollinated flowers. Thus, we conclude that the species avoids self-fertilization by self-incompatibility, but interestingly shows also a certain degree of spatial separation of male and female reproductive structures within the same flower. This floral trait could be useful to avoid self-interference thus reducing ovule discounting and pollen loss on its own stigma.  相似文献   

5.
BACKGROUND AND AIMS: Intermediate individuals (perfect flowers with very high degree of pollen abortion) in a gynodioecious plant species are very rare. A study is made of male-female relationships in each flower type and how floral characters can enhance the avoidance of 'pollen discounting' and 'self-pollination' in two gynodioecious species, Teucrium capitatum and Origanum syriacum. METHODS: The relationship between stigma receptivity and pollen viability was studied in two gynodioecious protandrous species of Lamiaceae, in addition to measuring some floral morphological characters over the life span of the flowers. KEY RESULTS: Three plant types in each species were found: plants bearing hermaphrodite (or male fertile) flowers (MF), female (or male sterile) flowers (MS) and intermediate flowers (INT). Plant types differed in flower size, with MS types being shorter than the other two types. There was no difference in style length among plant types in T. capitatum. Stigma receptivity decayed with floral age and was negative and significantly correlated with pollen viability in the two species, and positive and significantly correlated with style length in O. syriacum but only in MS flowers of T. capitatum. CONCLUSIONS: Reduction in size of floral characters is associated with male sterility, except style length in T. capitatum. MF flowers have two successive reproductive impediments: self-pollination and pollen-stigma interference. In both species, self-pollination is avoided by dichogamy (negative correlation between stigma receptivity and pollen viability), and pollen-stigma interference shows two different patterns: (1) style elongation in O. syriacum is characterized by a significant length increase, final MF dimensions are greater than those of MS dimensions, and style length is positively and significantly correlated with stigma receptivity; and (2) style movement in T. capitatum is characterized by a non-significant increase in style length, final MF floral dimensions are similar to those of MS dimensions, and there is no correlation between style length and stigma receptivity.  相似文献   

6.
Historically, explanations for the evolution of floral traits that reduce self-fertilization have tended to focus on selection to avoid inbreeding depression. However, there is growing support for the hypothesis that such traits also play a role in promoting efficient pollen dispersal by reducing anther-stigma interference. The relative importance of these two selective pressures is currently a popular topic of investigation. To date, there has been no theoretical exploration of the relative contributions of selection to avoid the genetic costs of self-fertilization and selection to promote efficient pollen dispersal on the evolution of floral traits. We developed a population genetic model to examine the influence of these factors on the evolution of dichogamy: the temporal separation of anther maturation and stigma receptivity. Our analysis indicates that anther-stigma interference can favor dichogamy even in the absence of in-breeding depression. Although anther-stigma interference and inbreeding depression are the key forces driving the initial evolution of dichogamy, selection to match the timing of pollen dispersal to the availability of ovules at the population level becomes a more potent force opposing the further evolution of dichogamy as the extent of temporal separation increases. This result may help to explain otherwise puzzling phenomena such as why dichogamy is rarely complete in nature and why dichogamy tends to be associated with asynchronous flower presentation.  相似文献   

7.
Since Darwin observed the reconfiguration of pollinia in orchards and referred to it as a function to reduce self-pollination, diverse floral movements have been investigated and various hypotheses have been proposed to explain their adaptive significance. However, adaptive significance of floral movement in some species has yet to be fully explained. Increasing evidence suggests that some floral movements, which have previously been considered as a mechanism to avoid self-pollination, may act as a mechanism to reduce intrafloral male-female interference. In this review, we first explore insect-induced floral movement—such as secondary pollen presentation—that enhances the efficiency and accuracy of pollination. Secondly, we outline the active movements of different floral structures of pistil (style), stamen (filament, anther, pollen), and corolla, such as flexistyly, pollen sliding and catapulting, and anther rotation. Thirdly, we introduce movement herkogamy, which makes herkogamy decrease or increase via the movements of floral structures, especially decreased approach herkogamy via style curvature in the Malvaceae with a monadelphous column. Fourthly, we highlight the different adaptive significances in floral movements for understanding their evolution, including reduction in intrafloral male–female interference, promotion of outcrossing and/or avoidance of self-pollination, delayed autonomous selfing, and tolerance to harsh environments. In particular, we explore the possibility of three functions of one floral movement in one species, which differs from the generally recognized and conventional notion of one floral movement in one species with only one or two functional mechanisms. Finally, we provide perspectives on the challenges and opportunities for using demographic and molecular genetic approaches to (i) study the relative importance and evolutionary mechanism of different adaptive significances in one floral movement; and (ii) simultaneously investigate the floral movement and correlative traits of broader species in related or unrelated families to test how they evolved and the evolutionary relationship between their functions.  相似文献   

8.
The selective pressure imposed by maximizing male fitness (pollen dispersal) in shaping floral structures is increasingly recognized and emphasized in current plant sciences. To maximize male fitness, many flowers bear a group of stamens with temporally separated anther dehiscence that prolongs presentation of pollen grains. Such an advantage, however, may come with a cost resulting from interference of pollen removal by the dehisced anthers. This interference between dehisced and dehiscing anthers has received little attention and few experimental tests to date. Here, using one-by-one stamen movement in the generalist-pollinated Parnassia palustris, we test this hypothesis by manipulation experiments in two years. Under natural conditions, the five fertile stamens in P. palustris flowers elongate their filaments individually, and anthers dehisce successively one-by-one. More importantly, the anther-dehisced stamen bends out of the floral center by filament deflexion before the next stamen''s anther dehiscence. Experimental manipulations show that flowers with dehisced anther remaining at the floral center experience shorter (1/3–1/2 less) visit durations by pollen-collecting insects (mainly hoverflies and wasps) because these ‘hungry’ insects are discouraged by the scant and non-fresh pollen in the dehisced anther. Furthermore, the dehisced anther blocks the dehiscing anther''s access to floral visitors, resulting in a nearly one third decrease in their contact frequency. As a result, pollen removal of the dehiscing anther decreases dramatically. These results provide the first direct experimental evidence that anther-anther interference is possible in a flower, and that the selection to reduce such interferences can be a strong force in floral evolution. We also propose that some other floral traits, usually interpreted as pollen dispensing mechanisms, may function, at least partially, as mechanisms to promote pollen dispersal by reducing interferences between dehisced and dehiscing anthers.  相似文献   

9.

Background and Aims

Spatial (herkogamy) and temporal (dichogamy) separation of pollen presentation and stigma receptivity have been interpreted as reducing interference between male and female functions in hermaphroditic flowers. However, spatial separation leads to a potential conflict: reduced pollination accuracy, where pollen may be placed in a location on the pollinator different from the point of stigma contact.

Methods

To understand better how herkogamous flowers resolve this conflict, a study was made of a subalpine herb, Parnassia epunctulata, the nectariferous flowers of which exhibit sequential anther dehiscence (staggered pollen presentation) and stamen movements; usually one newly dehisced anther is positioned each day over the central gynoecium, while the older stamens bend away from the central position.

Key Results

The open flowers were visited by a variety of pollinators, most of which were flies. Seed set was pollinator-dependent (bagged flowers set almost no seeds) and pollen-limited (manual pollination increased seed set over open pollination). Analyses of adaptive accuracy showed that coordinated stamen movements and style elongation (movement herkogamy) dramatically increased pollination accuracy. Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the vertical and horizontal planes in relation to the opposite sexual structure and pollinator position. By contrast, the spatial correspondence between anthers and stigma was dramatically lower before the anthers dehisced and after stamens bent outwards, as well as before and after the period of stigmatic receptivity.

Conclusions

It is shown for the first time that a combination of movement herkogamy and dichogamy can maintain high pollination accuracy in flowers with generalized pollination. Staggered pollen and stigma presentation with spatial correspondence can both reduce sexual interference and improve pollination accuracy.  相似文献   

10.
Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar production in nectar standing crop and secretion rate were investigated in Geranium sylvaticum, a gynodioecious plant species with protandry (i.e. with hermaphrodite flowers releasing their pollen before the stigma is receptive). We found that flowers from hermaphrodites produced more nectar than female flowers in terms of total nectar sugar content. In addition, differences in nectar production among floral phases were found in hermaphrodite flowers but not in female flowers. In hermaphrodite flowers, maximum sugar content coincided with pollen presentation and declined slightly towards the female phase, indicating nectar reabsorption, whereas in female flowers sugar content did not differ between the floral phases. These differences in floral reward are discussed in relation to visitation patterns by pollinators and seed production in this species.  相似文献   

11.
Floral traits that reduce self-pollination in hermaphroditic plants have usually been interpreted as mechanisms that limit the genetic consequences of self-fertilization. However, the avoidance of sexual conflict between female and male function (self-interference) may also represent an important selection pressure for the evolution of floral traits, particularly in self-incompatible species. Here, we use experimental manipulations to investigate self-interference in Narcissus assoanus, a self-incompatible species with a stigma-height dimorphism in which the degree of spatial separation between sex organs (herkogamy) differs strikingly between the long- and short-styled morphs (hereafter L- and S-morphs). We predicted that weak herkogamy in the L-morph would cause greater self-pollination and hence self-interference. Experimental self-pollination reduced seed set when it occurred prior to, or simultaneously with, cross-pollination in the L-morph, but only if it occurred prior to cross-pollination in the S-morph. In the field, autonomous self-pollination was greater in the L-morph than the S-morph, but we found no evidence that self-interference reduced maternal or paternal fitness in either morph. One-day-old flowers of the L-morph have reduced stigma receptivity and hence exhibit protandry, whereas stigma receptivity and anther dehiscence are concurrent in the S-morph. This suggests that the two style morphs have alternative strategies for reducing self-interference: dichogamy in the L-morph and herkogamy in the S-morph. These results provide insight into the mechanisms that reduce sexual conflict in hermaphrodite plants and are of significance for understanding the evolution and maintenance of sexual polymorphisms.  相似文献   

12.
通过对峨眉山特有种侧穗凤仙花的开花生物学特性、花器官结构、传粉者种类和访花行为、繁育系统、花粉胚珠比(P/O)及花粉活力的研究.发现居群之间花的寿命变化比较大,它们的雄蕊期长,雌/雄蕊期比为0.12~0.17;花粉胚珠比达到4.6万,花粉在开花第一天有很高的活力(>90%);传粉者为熊蜂和天蛾,熊蜂包括贞洁熊蜂、白背熊...  相似文献   

13.
14.
Floral sexual organ (stamen and pistil) movements are selective adaptations that have different functions in male-female reproduction and the evolution of flowering plants. However, the significance of stamen movements in the spatial–temporal function and separation of male and female organs has not been experimentally determined in species exhibiting floral temporal closure. The current study investigated the role of slow stamen (group-by-group) movement in male-female sexual function, and the effect of stamen movement on pollen removal, male-male and male-female interference, and mating patterns of Geranium pratense, a plant with temporal floral closure. This species uses stamen group-by-group movement and therefore anther-stigma spatial–temporal separation. Spatial separation (two whorls of stamen and pistil length) was shown to be stronger than temporal separation. We found that stamen movements to the center of the flower increase pollen removal, and the most common pollinators visited more frequently and for longer durations during the male floral stage than during the female floral stage. Petal movements increased both self-pollen deposition rate and sexual interference in G. pratense. The fruit and seed set of naturally and outcrossed pollinated flowers were more prolific than those of self-pollinated flowers. Group-by-group stamen movement, dehiscence of stamens, pistil movement, and male-female spatial–temporal functional separation of G. pratense before floral temporal closure may prevent male-female and stamen-stamen interference and pollen discounting, and may increase pollen removal and cross-pollination.  相似文献   

15.
Selection favoring avoidance of stigma clogging, pollen discounting, self-fertilization, and other negative effects of self-pollination can produce intricate patterns of intra- and interfloral dichogamy in plants bearing numerous flowers. Here we report an extensive study of the relationships among dichogamy, floral sex allocation (pollen-to-ovule ratios), nectar production, floral visitors, mating system, and fruit set in natural populations of Schefflera heptaphylla, a widespread paleotropical secondary forest tree that produces thousands of flowers in a blooming season. Each tree produces 15?C30 sequentially blooming, paniculate, compound inflorescences. Each compound inflorescence has up to three orders of umbellets, which also bloom sequentially. While hand-pollinations showed that S. heptaphylla was capable of self-fertilization, our observations of thousands of flowers showed that strong intra- and interfloral protandry severely restricts both autogamous and geitonogamous self-pollination. All flowers were bisexual, thus the sexual system of the populations we studied was hermaphroditism. The pollen-to-ovule (P/O) ratios were characteristic of outcrossing species, and P/O ratios of flowers in the last-maturing (third order) umbellets were significantly higher than those in earlier-maturing (first and second order) umbellets. Floral visitors were primarily flies (Chrysomya sp. and Syrphinae sp.) and wasps (Vespula sp. and Eumenes sp.). Flowers produced nectar during both the male (pollen presentation) and female (stigma receptivity) stages of their development, and the volume of nectar production was higher in the female stage. Nevertheless, flowers received fewer visits in the female stage than they did in the male stage, and natural fruit set was low, especially in first and third order umbellets. Fruit set from hand cross- and self-pollinations was significantly higher than natural fruit set, indicating pollen limitation of fruit set. Schefflera heptaphylla has also been reported to be andromonoecious. Both hermaphroditism and andromonoecy are consistent with theoretical predictions for variation in sex allocation among sequentially maturing flowers in protandrous species. Further studies comparing hermaphroditic and andromonoecious populations of S. heptaphylla could elucidate the selective factors affecting sex expression, nectar production, and fruit set in species with numerous flowers displaying both intra- and interfloral dichogamy.  相似文献   

16.
The adaptiveness of distyly has been typically investigated in terms of its female function, specifically pollen receipt. However, pollen loads on stigmas can only provide moderate support for Darwin's hypothesis of the promotion of legitimate crosses. To determine the effectiveness of hummingbirds as pollen vectors between floral morphs and the consequences in terms of male (pollen transfer) and female function (pollen receipt) in Palicourea padifolia (Rubiaceae), floral visitors, their foraging modes, and temporal patterns of floral visitation were observed and documented. Differences in pollen and stigma morphology, pollen flow, rates of pollen deposition, and/or stigmatic pollen loads were then evaluated for their contribution toward differences in reproductive output between floral morphs. A pollination experiment with stuffed hummingbirds that varied in bill size was done to evaluate the contribution of bill variation toward differences between floral morphs in pollen receipt and pollen transfer and female reproductive output. Anthers of long-styled flowers contained significantly more and smaller pollen grains than those of short-styled flowers, independently of corolla and anther lengths. The shape and orientation of the stigma lobes differed between morphs and were significantly longer among short-styled flowers. Hummingbird visitation rates did not differ significantly between floral morphs, and foraging movements from focal plants towards neighboring plants were independent of floral morph. Stigmatic pollen loads under field conditions and those after controlled hummingbird visitation, along with rates of pollen accumulation through the day indicated that stigmas of short-styled flowers receive proportionately more legitimate (intermorph) pollen grains than did those of long-styled flowers. However, the species of hummingbird was marginally significant in explaining variation in pollen deposition on stigmas. Lastly, intermorph pollinations of P. padifolia resulted in significant differences in fruit production between floral morphs, independent of pollination treatment and pollinator species; short-styled flowers proportionately developed almost twice the number of fruits developed by long-styled flowers.  相似文献   

17.
Hermaphroditism is prevalent in plants but may allow interference between male function (pollen removal and dispersal) and female function (pollen receipt and seed production) within a flower. Temporal or spatial segregation of gender within a hermaphroditic flower may evolve to reduce this interference and enhance male and female reproductive success. We tested this hypothesis using Chamerion angustifolium (Onagraceae), in which pollen removal (male) and pollen deposition (female) were measured directly on hermaphroditic and experimentally produced unisexual flowers. During a single flower visit in the field, bees deposited 159±24 (SE) pollen grains on a stigma and removed 1058±198 grains from each flower. Anther removal did not alter deposition rates. In the laboratory, bees removed 2669±273 pollen grains and deposited 209±72.3 cross-pollen and 120±28.4 facilitated self-pollen grains per visit. The presence of anthers significantly reduced cross-pollen deposition on the stigma. In contrast, pollen removal was not affected by presence of the pistil. These results suggest that within-flower interference affects female function and represents a fitness cost that can be reduced through temporal segregation of gender within the flower. Co-ordinating editor: S.-M. Chang  相似文献   

18.
1. We investigated the phenology of the male and female sexual functions in flowers of Oil-seed Rape ( Brassica napus ) that were exposed to pollinators in an experimental garden. The female 'residual sex function' (RSF) of flowers was measured by hand-pollinating with genetically marked pollen in order to determine the proportion of ovules that remained available for fertilization by incoming pollen. Male RSF was measured by estimating the proportion of pollen grains that remained in dehiscing anthers.
2. Following flower opening, an average flower's male and female sexual functions each required for completion c. 13 h of exposure to pollinators. One hour after opening, c. 50% of a flower's ovules were unavailable to incoming pollen whereas only c. 10% of pollen was removed. Therefore, a flower's sexual function was predominantly female for the first hour and predominantly male thereafter.
3. We found a fairly close correspondence between the proportion of the stigma covered with pollen and the depletion of female RSF.
4. On average, floral senescence occurred after c. 14·5 h of exposure to pollinators. Our observations are fairly consistent with a simple, economic model of optimal senescence time because the flowers remained open for approximately the same length of time as was necessary for the completion of their sexual functions.
5. A flower's senescence was hastened when pollen was removed from the anthers, but not when pollen was deposited on the stigma.
6. When flowers were either left undisturbed or hand-pollinated, senescence occurred after c. 24 h. Pollen removal caused senescence after c. 13 h, which also approximated the longevity of flowers in the experimental garden. Apparently, pollen removal governed floral longevity under field conditions.  相似文献   

19.
Plant-pollinator interactions promote the evolution of floral traits that attract pollinators and facilitate efficient pollen transfer. The spatial separation of sex organs, herkogamy, is believed to limit sexual interference in hermaphrodite flowers. Reverse herkogamy (stigma recessed below anthers) and long, narrow corolla tubes are expected to promote efficiency in male function under hawkmoth pollination. We tested this prediction by measuring selection in six experimental arrays of Polemonium brandegeei, a species that displays continuous variation in herkogamy, resulting in a range of recessed to exserted stigmas. Under glasshouse conditions, we measured pollen removal and deposition, and estimated selection gradients (β) through female fitness (seeds set) and male fitness (siring success based on six polymorphic microsatellite loci). Siring success was higher in plants with more nectar sugar and narrow corolla tubes. However, selection through female function for reverse herkogamy was considerably stronger than was selection through male function. Hawkmoths were initially attracted to larger flowers, but overall preferred plants with reverse herkogamy. Greater pollen deposition and seed set also occurred in reverse herkogamous plants. Thus, reverse herkogamy may be maintained by hawkmoths through female rather than male function. Further, our results suggest that pollinator attraction may play a considerable role in enhancing female function.  相似文献   

20.
The pollen donor and pollinator attractor hypotheses are explanations for the functions of the male flowers of andromonoecious plants. We tested these two hypotheses in the andromonoecious shrub Capparis spinosa L. (Capparaceae) and confirmed that pollen production and cumulative volume and sugar concentration of nectar do not differ between male and perfect flowers. However, male flowers produced larger anthers, larger pollen grains and smaller ovaries than perfect flowers. Observations on pollinators indicated that two major pollinators (Xylocopa valga Gerst and Proxylocopa sinensis Wu) did not discriminate between flower morphs and that they transferred pollen grains a similar distance. However, there were more seeds per fruit following hand pollination with pollen from male flowers than from perfect flowers. Individuals of C. spinosa with a larger floral display (i.e. bearing more flowers) received more pollen grains on the stigma of perfect flowers. Female reproductive success probably is not limited by pollen. These results indicate that male flowers of C. spinosa save resources for female function and that they primarily serve to attract pollinators as pollen donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号