首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cardiacNa+/Ca2+ exchanger (NCX) in troutexhibits profoundly lower temperature sensitivity in comparison to themammalian NCX. In this study, we attempt to characterize the regions of the NCX molecule that are responsible for its temperature sensitivity. Chimeric NCX molecules were constructed using wild-type trout andcanine NCX cDNA and expressed in Xenopus oocytes.NCX-mediated currents were measured at 7, 14, and 30°C using thegiant excised-patch technique. By using this approach, the differentialtemperature dependence of NCX was found to reside within theNH2-terminal region of the molecule. Specifically, we foundthat ~75% of the Na+/Ca2+ exchangedifferential energy of activation is attributable to sequencedifferences in the region that include the first four transmembranesegments, and the remainder is attributable to transmembrane segmentfive and the exchanger inhibitory peptide site.

  相似文献   

2.
Ca(2+), which enters cardiac myocytes through voltage-dependent Ca(2+) channels during excitation, is extruded from myocytes primarily by the Na(+)/Ca(2+) exchanger (NCX1) during relaxation. The increase in intracellular Ca(2+) concentration in myocytes by digitalis treatment and after ischemia/reperfusion is also thought to result from the reverse mode of the Na(+)/Ca(2+) exchange mechanism. However, the precise roles of the NCX1 are still unclear because of the lack of its specific inhibitors. We generated Ncx1-deficient mice by gene targeting to determine the in vivo function of the exchanger. Homozygous Ncx1-deficient mice died between embryonic days 9 and 10. Their hearts did not beat, and cardiac myocytes showed apoptosis. No forward mode or reverse mode of the Na(+)/Ca(2+) exchange activity was detected in null mutant hearts. The Na(+)-dependent Ca(2+) exchange activity as well as protein content of NCX1 were decreased by approximately 50% in the heart, kidney, aorta, and smooth muscle cells of the heterozygous mice, and tension development of the aortic ring in Na(+)-free solution was markedly impaired in heterozygous mice. These findings suggest that NCX1 is required for heartbeats and survival of cardiac myocytes in embryos and plays critical roles in Na(+)-dependent Ca(2+) handling in the heart and aorta.  相似文献   

3.
Calcium sensitive actin severing protein, adseverin, with Mr 74,000, was cleaved into two fragments of Mr 42,000 and Mr 39,000 by V8 protease and trypsin, and both fragments were purified by high performance (pressure) liquid chromatography ion-exchange column chromatography. To understand how adseverin can sever actin filaments, we identified the actin-binding domains. The NH2 termini of native adseverin and the Mr 42,000 fragment were confirmed to be blocked by amino acid sequencing. Twelve amino acids of the Mr 39,000 fragment were sequenced from the NH2 terminus; the sequence of this part had a homology to the hinge region between segments 3 and 4 of gelsolin and villin. Thus, the Mr 42,000 fragment is the NH2-terminal half (N42), and the Mr 39,000 fragment is the COOH-terminal half (C39). Each fragment was examined for actin-severing, -nucleating, -capping, and phospholipid binding activities with and without calcium. N42 contained a calcium-dependent actin-severing activity regulated by phospholipid. C39 bound to G-actin in a calcium-dependent manner, but had no severing activity. The sequence homology and similar functional domain structure suggest a common structural basis for the calcium- and phospholipid-regulated actin-severing properties shared by adseverin, gelsolin, and villin.  相似文献   

4.
We tested here the hypothesis that the pharmacological modulation of the mitochondrial Na+/Ca2+ exchanger (mNCX) could be a new neuroprotective strategy to rescue stressed vulnerable neurons from death. We used rat hippocampal slices incubated with veratridine to cause neuronal death through a mechanism involving Na+ and Ca2+ overload. CGP37157 (CGP), an inhibitor of the mNCX, rescued veratridine vulnerable neurons from death, showing an EC50 of 5 μM. This neuroprotection was associated to mitigation of veratridine-elicited overproduction of free radicals and to inhibition of the p38 MAPK-linked apoptotic pathway. These results suggest that the mNCX could become a new target to develop compounds with potential therapeutic neuroprotective actions in neurodegenerative diseases.  相似文献   

5.
6.
The sarcolemmal Na/Ca exchanger undergoesan inactivation process in which exchange activity decays over severalseconds following activation by the application of Na to theintracellular surface of the protein. Inactivation is eliminated by anincrease in membrane phosphatidylinositol 4,5-bisphosphate(PIP2). Inactivation is also strongly affected by mutationsto a basic 20-amino acid segment of the exchanger known as theendogenous XIP region. The hypothesis that PIP2 directlyinteracts with the XIP region of the exchanger was tested. First, weinvestigated the ability of a peptide with the same sequence as the XIPregion to bind to immobilized phospholipid vesicles.125I-labeled XIP bound avidly to vesicles containing only alow concentration (<3%) of PIP2. The binding wasspecific, in that binding was not displaced by other basic peptides.The effects of altering the sequence of XIP peptides also indicatedbinding specificity. Second, we examined the functional response toPIP2 of exchangers with mutated XIP regions. Outward Na/Caexchange currents were measured using the giant excised patchtechnique. The mutated exchangers either had no inactivation oraccelerated inactivation. In both cases, the exchangers no longerresponded to PIP2 or to PIP2 antibodies. Overall, the data indicate that the affinity of the endogenous XIPregion for PIP2 is an important determinant of theinactivation process.

  相似文献   

7.
8.
Previous work from this laboratorydemonstrated that arachidonic acid activates c-junNH2-terminal kinase (JNK) through oxidative intermediatesin a Ca2+-independent manner (Cui X and Douglas JG.Arachidonic acid activates c-jun N-terminal kinase throughNADPH oxidase in rabbit proximal tubular epithelial cells. ProcNatl Acad Sci USA 94: 3771-3776, 1997.). We now report thatJNK can also be activated via a Ca2+-dependent mechanism byagents that increase the cytosolic Ca2+ concentration(Ca2+ ionophore A23187, Ca2+-ATPaseinhibitor thapsigargin) or deplete intracellular Ca2+stores [intracellular Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM]. The activation of JNK by BAPTA-AM occurs despite adecrease in cytosolic Ca2+ concentration as detected by theindicator dye fura 2, but appears to be related to Ca2+metabolism, because modification of BAPTA with two methyl groups increases not only the chelation affinity for Ca2+, butalso the potency for JNK activation. BAPTA-AM stimulates Ca2+ influx across the plasma membrane, and the resultinglocal Ca2+ increases are probably involved in activation ofJNK because Ca2+ influx inhibitors (SKF-96365, nifedipine)and lowering of the free extracellular Ca2+ concentrationwith EGTA reduce the BAPTA-induced JNK activation.

  相似文献   

9.
Asterosap, a group of equally active isoforms of sperm-activating peptides from the egg jelly of the starfish Asterias amurensis, functions as a chemotactic factor for sperm. It transiently increases the intracellular cGMP level of sperm, which in turn induces a transient elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). Using a fluorescent Ca(2+)-sensitive dye, Fluo-4 AM, we measured the changes in sperm [Ca(2+)](i) in response to asterosap. KB-R7943 (KB), a selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), significantly inhibited the asterosap-induced transient elevation of [Ca(2+)](i), suggesting that asterosap influences [Ca(2+)](i) through activation of a K+-dependent NCX (NCKX). An NCKX activity of starfish sperm also shows K(+) dependency like other NCKXs. Therefore, we cloned an NCKX from the starfish testes and predicted that it codes for a 616 amino acid protein that is a member of the NCKX family. Pharmacological evidence suggests that this exchanger participates in the asterosap-induced Ca(2+) entry into sperm.  相似文献   

10.
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.  相似文献   

11.
Persistent c-Jun NH2-terminal kinase (JNK) activation induces cell death. Different mechanisms are ascribed to JNK-induced cell death. Most of the JNK-apoptosis studies employ stress stimuli known to activate kinases other than JNK. Here we used overexpression of mitogen-activated protein kinase kinase 7 (MKK7) to activate selectively JNK in T lymphoma Jurkat cells. Similar to that reported previously, Fas ligand (FasL) expression was up-regulated by JNK activation. Dominant negative-FADD and caspase-8 inhibitor benzyloxycarbonyl-Ile-Glu-Thr-Asp effectively inhibited MKK7-induced cell death, supporting a major involvement of FADD cascade. However, MKK7-induced cell death was not prevented by antagonist antibody ZB4 and Fas-Fc, indicating that Fas-FasL interaction is minimally involved. Confocal microscopy revealed that persistent JNK activation led to clustering of Fas. Our results suggest that, in contrast to that reported previously, JNK alone-induced death in Jurkat cells is FADD-dependent but is not triggered by Fas-FasL interaction.  相似文献   

12.
13.
Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1) is a cytosolic protein tyrosine phosphatase containing two SH2 domains in its NH2 terminus. That immunological abnormalities of the motheaten and viable motheaten mice are caused by mutations in the gene encoding SHP-1 indicates that SHP-1 plays important roles in lymphocyte differentiation, proliferation, and activation. To elucidate molecular mechanisms by which SHP-1 regulates BCR-mediated signal transduction, we determined SHP-1 substrates in B cells using the substrate-trapping approach. When the phosphatase activity-deficient form of SHP-1, in which the catalytic center cysteine (C453) was replaced with serine (SHP-1-C/S), was introduced in WEHI-231 cells, tyrosine phosphorylation of a protein of about 70 kDa was strongly enhanced. Immunoprecipitation and Western blot analyses revealed that this protein is the B cell linker protein (BLNK), also named SH2 domain leukocyte protein of 65 kDa, and that upon tyrosine phosphorylation BLNK binds to SHP-1-C/S in vitro. In vitro kinase assays demonstrated that hyperphosphorylation of BLNK in SHP-1-C/S-expressing cells was not due to enhanced activity of Lyn or Syk. Furthermore, BCR-induced activation of c-Jun NH2-terminal kinase was shown to be significantly enhanced in SHP-1-C/S transfectants. Taken collectively, our results suggest that BLNK is a physiological substrate of SHP-1 in B cells and that SHP-1 selectively regulates c-Jun NH2-terminal kinase activation.  相似文献   

14.
Expression of a c-Jun NH(2)-terminal protein kinase (JNK), also known as stress-activated protein kinase (SAPK) in rodents, has been implicated in the ability of cells to respond to a variety of stressors. In nonmammalian cells, JNK participates in the regulation of cell volume in response to hyperosmotic stress. To explore the possibility that JNK may participate in the transduction of osmotic information in mammals, we evaluated the expression of JNK immunoreactivity in neuroendocrine cells of the supraoptic nucleus. Low basal expression of JNK-2 (SAPK-alpha) and JNK-3 (SAPK-beta) was seen in vivo and in vitro. During water deprivation, JNK-2 increased in the supraoptic nucleus but not in the cortex. Osmotic or glutamate receptor stimulation in vitro also resulted in an increase in JNK-2 that was tetrodotoxin (TTX) insensitive and paralleled by increased nuclear phospho-c-Jun immunoreactivity. A TTX-sensitive increase in JNK-3 was seen in smaller neurons. Thus different JNK pathways may mediate individual cellular responses to osmotic stress, with JNK-2 linked to osmotic and glutamate receptor stimulation in magnocellular neuroendocrine cells.  相似文献   

15.
The aim of the present study was to investigate the expression of the mammary-derived growth inhibitor (MDGI) and the subcellular localization of MDGI-related antigens in bovine mammary glands. Cell-free translation of poly(A+) = RNA, immunoprecipitation with rabbit anti-MDGI-antibodies, and estimation of the relative contents of MDGI by a radioimmunoassay in mammary tissue of different functional states revealed that the 13 kDa MDGI was dramatically increased in terminally differentiated mammary tissue compared with the proliferating tissue from pregnant animals. To address the question of tissue localization, polyclonal anti-MDGI antibodies and antibodies directed against a synthetic peptide corresponding to residues 69 to 78 of MDGI were used. Western blotting of tissue fractions revealed the cytosolic and microsomal localization of MDGI. Additionally, both types of antibodies detected a 70-kDa antigen in the nuclear fraction of differentiated mammary glands. Salt extraction and DNase I digestion of isolated nuclei, as well as chromatin purification, indicated an association of the 70-kDa antigen with the chromatin. By means of the immunogold technique, MDGI-related antigens were localized within euchromatic nuclear regions of epithelial cells in the intact differentiated mammary gland. The immunostaining was markedly diminished in the proliferating tissue. This finding raises the possibility that MDGI and the 70-kDa antigen influence cell proliferation by acting on gene expression within the nuclei of mammary glands.  相似文献   

16.
Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.  相似文献   

17.
The Ca2+ dependency of NK cell-mediated and cytolysin-mediated cytolysis may be related to increases in target cell intracellular Ca2+. In a previous study we hypothesized that the Na+/Ca2+ exchanger can act as a counter-lytic mechanism by regulating the damaging increases in intracellular free calcium ([Ca2+]i) produced by cytolysin. We found that conditions said to inhibit Ca2+ extrusion by Na+/Ca2+ exchange, namely low extracellular Na+ or the presence of certain amiloride analogs which block Na+/Ca2+ exchange, enhanced the cytolysin-mediated cytolysis of YAC-1 lymphoma cells. In the present work we have confirmed the above hypothesis by measuring the [Ca2+]i of fura-2- or aequorin-labeled YAC-1 cells treated with cytolysin and low Na+ medium or amiloride analogs. YAC-1 cells appear to have a Na+/Ca2+ exchange system: low Na+ medium caused gradual increases in [Ca2+]i, and this effect was reversed in Na(+)-replete medium. Cytolysin purified from NK cell granules caused rapid dose-dependent increases in [Ca2+]i, and low Na+ medium enhanced these cytolysin-mediated increases. The Na+/Ca2+ exchange system appeared to be more active in cytolysin-challenged cells: amiloride analogs, which inhibit Na+/Ca2+ exchange in other systems, acted synergistically with cytolysin to cause large increases in [Ca2+]i, but had little effect, if any, on their own. 5-(N-4-Chlorobenzyl)-2',4'-dimethylbenzamil, the amiloride analog which has the greatest specificity for the Na+/Ca2+ exchanger and which previously was found to be the most potent enhancer of cytolysin-mediated cytolysis, was the most potent enhancer of cytolysin-mediated increases in [Ca2+]i. The above results suggest that Na+/Ca2+ exchange may be one of the target cell mechanisms of resistance to cytolysin and NK cell-mediated cytolysis.  相似文献   

18.
Here we identify a cytosolic factor essential for MgATP up-regulation of the squid nerve Na+/Ca2+ exchanger. Mass spectroscopy and Western blot analysis established that this factor is a member of the lipocalin super family of lipid binding proteins of 132 amino acids in length. We named it Regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ). ReP-1-NCXSQ was cloned, over expressed and purified. Far-UV circular dichroism and infrared spectra suggest a majority of β-strand in the secondary structure. Moreover, the predicted tertiary structure indicates ten β-sheets and two short α-helices characteristic of most lipid binding proteins. Functional experiments showed that in order to be active ReP1-NCXSQ must become phosphorylated in the presence of MgATP by a kinase that is Staurosporin insensitive. Even more, the phosphorylated ReP1-NCXSQ is able to stimulate the exchanger in the absence of ATP. In addition to the identification of a new member of the lipid binding protein family, this work shows, for the first time, the requirement of a lipid binding protein for metabolic regulation of an ion transporting system.  相似文献   

19.
The role of 1,25(OH)2D3 on the intestinal NCX activity was studied in vitamin D-deficient chicks (-D) as well as the hormone effect on NCX1 protein and gene expression and the potential molecular mechanisms underlying the responses. Normal, -D and -D chicks treated with cholecalciferol or 1,25(OH)2D3 were employed. In some experiments, -D chicks were injected with cycloheximide or with cycloheximide and 1,25(OH)2D3 simultaneously. NCX activity was decreased by -D diet, returning to normal values after 50 IU daily of cholecalciferol/10 days or a dose of 1 μg calcitriol/kg of b.w. for 15 h. Cycloheximide blocked NCX activity enhancement produced by 1,25(OH)2D3. NCX1 protein and gene expression were diminished by -D diet and enhanced by 1,25(OH)2D3. Vitamin D receptor expression was decreased by -D diet, effect that disappeared after 1,25(OH)2D3 treatment. Rapid effects of 1,25(OH)2D3 on intestinal NCX activity were also demonstrated. The abolition of the rapid effects through addition of Rp-cAMPS and staurosporine suggests that non genomic effects of 1,25(OH)2D3 on NCX activity are mediated by activation of PKA and PKC pathways. In conclusion, 1,25(OH)2D3 enhances the intestinal NCX activity in -D chicks through genomic and non genomic mechanisms.  相似文献   

20.
The role of 1,25(OH)(2)D(3) on the intestinal NCX activity was studied in vitamin D-deficient chicks (-D) as well as the hormone effect on NCX1 protein and gene expression and the potential molecular mechanisms underlying the responses. Normal, -D and -D chicks treated with cholecalciferol or 1,25(OH)(2)D(3) were employed. In some experiments, -D chicks were injected with cycloheximide or with cycloheximide and 1,25(OH)(2)D(3) simultaneously. NCX activity was decreased by -D diet, returning to normal values after 50 IU daily of cholecalciferol/10 days or a dose of 1μg calcitriol/kg of b.w. for 15 h. Cycloheximide blocked NCX activity enhancement produced by 1,25(OH)(2)D(3). NCX1 protein and gene expression were diminished by -D diet and enhanced by 1,25(OH)(2)D(3). Vitamin D receptor expression was decreased by -D diet, effect that disappeared after 1,25(OH)(2)D(3) treatment. Rapid effects of 1,25(OH)(2)D(3) on intestinal NCX activity were also demonstrated. The abolition of the rapid effects through addition of Rp-cAMPS and staurosporine suggests that non genomic effects of 1,25(OH)(2)D(3) on NCX activity are mediated by activation of PKA and PKC pathways. In conclusion, 1,25(OH)(2)D(3) enhances the intestinal NCX activity in -D chicks through genomic and non genomic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号