首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A psychrophilic fungal strain of Geomyces pannorum P15 was screened for its ability to utilize a range of synthetic and natural organophosphonate compounds as the sole source of phosphorus, nitrogen, or carbon. Only phosphonoacetic acid served as a phosphorus source for microbial growth in phosphate-independent manner. Substrate metabolism did not lead to extracellular release of inorganic phosphate. No phosphonate metabolizing enzyme activity was detectable in cell-free extracts prepared from Geomyces biomass pregrown on 2 mmol/L phosphonoacetic acid.  相似文献   

2.
A strain of Agromyces fucosus, designated Vs2, metabolized a range of organophosphonate compounds as sole phosphorus sources for growth and metabolized phosphonoacetate as a sole carbon, energy and phosphorus source for growth. With phosphonoacetate as the sole phosphorus source and a pyruvate carbon source, transient phosphate release to the medium was observed, in contrast to cultures grown with glucose and phosphonoacetate, where no phosphate release to the medium was observed. Carbon catabolite repression, specifically by means of inducer exclusion of phosphonoacetate, was proposed as the mechanism responsible, and phosphonoacetate hydrolase enzyme assays carried out on cell extracts confirmed that induced phosphonoacetate hydrolase activities were indeed higher in cells grown on pyruvate with phosphonoacetate as sole phosphorus source. This phenomenon has not previously been demonstrated in vivo, and must represent a significant metabolic control of organophosphonate metabolism. The catabolite repression phenomenon was also evident when A. fucosus grew on 2-aminoethylphosphonate as sole phosphorus source, allowing demonstration of a third mode of control for biodegradation of this compound. Excision of stained zymogram gel pieces, followed by tryptic digestion and mass spectrometric analysis, allowed the identification of phosphonoacetate hydrolase-derived peptides.  相似文献   

3.
Phosphonate utilization by bacteria.   总被引:17,自引:4,他引:13       下载免费PDF全文
Bacteria able to use at least one of 13 ionic alkylphosphonates of O-alkyl or O,O-dialkyl alkylphosphonates as phosphorus sources were isolated from sewage and soil. Four of these isolates used 2-aminoethylphosphonic acid (AEP) as a sole carbon, nitrogen, and phosphorus source. None of the other phosphonates served as a carbon source for the organisms. One isolate, identified as Pseudomonas putida, grew with AEP as its sole carbon, nitrogen, and phosphorus source and released nearly all of the organic phosphorus as orthophosphate and 72% of the AEP nitrogen as ammonium. This is the first demonstration of utilization of a phosphonoalkyl moiety as a sole carbon source. Cell-free extracts of P. putida contained an inducible enzyme system that required pyruvate and pyridoxal phosphate to release orthophosphate from AEP; acetaldehyde was tentatively identified as a second product. Phosphite inhibited the enzyme system.  相似文献   

4.
A strain of Burkholderia cepacia isolated by enrichment culture utilized l-2-amino-3-phosphonopropionic acid (phosphonoalanine) at concentrations up to 20 mM as a carbon, nitrogen, and phosphorus source in a phosphate-insensitive manner. Cells contained phosphoenolpyruvate phosphomutase activity, presumed to be responsible for cleavage of the C—P bond of phosphonopyruvate, the transamination product of l-phosphonoalanine; this was inducible in the presence of phosphonoalanine.Organophosphonates are characterized by the presence of a stable, covalent carbon-to-phosphorus (C—P) bond. In the majority of previous studies they have been utilized only under phosphate-limited conditions and only as sole sources of phosphorus for microbial growth (3, 4, 21, 22). The C—P bond may be cleaved by at least three distinct bacterial enzymes: the C—P lyase enzyme complex(es) (17, 24, 25, 27, 28), phosphonoacetaldehyde hydrolase (5, 6, 9, 12), and phosphonoacetate hydrolase (1416). The latter enzyme is unique in that its expression is independent of the phosphate status of the cell and is inducible solely by phosphonoacetate. It is likely that organophosphonate biodegradation in the environment is mediated largely by a C—P lyase(s), with organisms capable of mineralizing organophosphonates as sources of carbon and energy being rare (2, 13).Phosphonoalanine (2-amino-3-phosphonopropionic acid) is one of the naturally occurring C—P compounds synthesized by lower organisms, such as the sea anemone Zoanthus sociatus (10) and the protozoan Tetrahymena pyriformis (8, 23, 29). In this paper, we report the isolation of a bacterium capable of mineralizing l-phosphonoalanine as a carbon, energy, nitrogen, and phosphorus source independently of the phosphate status of the cell.Enrichment was carried out with a basal mineral salts medium which contained the following (per liter): KCl, 0.2 g; MgSO4 · 7H2O, 0.2 g; CaCl2 · 2H2O, 0.01 g; ferric ammonium citrate, 1.0 mg; trace element solution (11), 1 ml; and vitamin solution (14), 1 ml. Filter-sterilized (0.22-μm pore size) dl-phosphonoalanine (8 mM) was routinely added as a carbon, energy, nitrogen, and phosphorus source. The pH of the medium was initially adjusted to 7.2, and where required, filter-sterilized solutions of sodium pyruvate as a carbon source (final concentration, 10 g liter−1), NH4Cl as an inorganic nitrogen source (final concentration, 5 g liter−1), and/or phosphate buffer (final concentration, 1 mM) were added to the medium. Enrichment cultures (25 ml in 250-ml Erlenmeyer flasks) were inoculated with a 0.5% (vol/vol) composite inoculum from an activated sludge plant (Dunmurry, Northern Ireland), a laundry waste disposal lagoon (Summit Lake, Wis.), and a sheep dip disposal site (County Antrim, Northern Ireland). All sites were known to have a history of exposure to organophosphonates. Cultures were incubated at 28°C on an orbital shaker at 100 rpm. Microbial growth was measured by the increase in optical density at 650 nm (OD650) using a Pye-Unicam 8265 UV-visible light spectrophotometer (Pye-Unicam Ltd., Cambridge, United Kingdom). Release of inorganic phosphate and ammonium into culture supernatants was monitored by the methods of Fiske and SubbaRow (7) and Weatherburn (30), respectively.Three gram-negative isolates, each capable of growth on 8 mM dl-phosphonoalanine as a carbon, nitrogen, and phosphorus source were obtained following five rounds of serial enrichment. Of these, isolate Pal6 grew most quickly on phosphonoalanine and was chosen for further investigation. It was identified by the National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, Scotland, as a strain of Burkholderia cepacia.When dl-phosphonoalanine (8 mM) was supplied as a carbon, nitrogen, and phosphorus source for growth of B. cepacia Pal6, some 47% of substrate phosphorus and 44% of substrate nitrogen was released concomitantly with growth as Pi and ammonium (results not shown). When the compound was supplied as the sole phosphorus source (Fig. (Fig.1),1), transient release of approximately 30% of substrate phosphorus to the medium as Pi was observed; this phenomenon has not previously been reported for the utilization of any organophosphorus compound as a phosphorus source. When B. cepacia Pal6 was grown on dl-phosphonoalanine as a nitrogen and phosphorus (Fig. (Fig.2)2) or nitrogen source, removal of 50% of phosphonoalanine from the medium was demonstrated by the method of Moore and Stein (18), along with release of just less than 50% of substrate phosphorus as Pi. A subsequent experiment in which the d- and l-enantiomers were separately supplied as sole sources of phosphorus indicated that only l-phosphonoalanine supported growth of B. cepacia Pal6. It is therefore clear that the catabolism of l-phosphonoalanine by this isolate is independent of the phosphate status of the cell, a marked departure from the many examples of classical pho regulon-controlled biodegradation of organophosphonates reported in the literature (26, 27). Open in a separate windowFIG. 1Growth of B. cepacia Pal6 on phosphonoalanine (1 mM) as the sole phosphorus source, with NH4Cl as a nitrogen source (5 g liter−1) and pyruvate as a carbon source (10 g liter−1). Symbols: •, OD650; ▴, phosphate release.Open in a separate windowFIG. 2Growth of B. cepacia Pal6 on phosphonoalanine (5 mM) as a nitrogen and phosphorus source, with pyruvate as a carbon source (10 g liter−1). Symbols: •, OD650; ▴, phosphate release (mM); □, phosphonoalanine remaining in medium (mM).B. cepacia Pal6 was grown on a range of dl-phosphonoalanine concentrations as carbon and nitrogen source in the presence of 1 mM inorganic phosphate. The cell yield was proportional to the concentration of phosphonoalanine supplied up to 20 mM, the highest concentration tested, again with release of less than 50% substrate phosphorus and nitrogen to the medium (results not shown), indicating no toxicity on the part of either the substrate or its breakdown products at these concentrations.In addition to phosphonoalanine, B. cepacia Pal6 was able to utilize 6 of 14 organophosphonate substrates supplied as the sole phosphorus source (Table (Table1);1); however, with the exception of 2-aminoethylphosphonic acid (2AEP), no phosphate release was observed during growth on these compounds, suggesting classical pho regulon control of their biodegradation and the involvement of a C—P lyase(s) or similar enzymes. B. cepacia Pal6 was also capable of growing on 2AEP as a carbon, energy, nitrogen, and phosphorus source, with concomitant release of excess phosphorus and nitrogen to the medium as inorganic phosphate and ammonium, respectively. It did not utilize any of the other phosphonates tested as the carbon and/or nitrogen and phosphorus source. The metabolism by B. cepacia Pal6 of 2AEP as a carbon, nitrogen and phosphorus source suggests that a phosphate-deregulated pathway is also responsible for the mineralization of this compound.

TABLE 1

Range of organophosphonate substrates utilized by B. cepacia Pal6 as the sole phosphorus source
Substrate (1 mM) Growth (μg of protein/ml)a
Inorganic phosphate200
2-Phosphonopropionic acid200
2AEPb200
Phenylphosphonic acid160
Hydroxymethylphosphonic acid160
Methylphosphonic acid120
Phosphonoacetic acid120
1-Aminobutylphosphonic acid30
Aminomethylphosphonic acid30
3-Aminopropylphosphonic acid20
Ethylphosphonic acid10
2-Amino-4-phosphonobutyric acid10
Phosphonoformic acid10
4-Aminobutylphosphonic acid10
1-Aminoethylphosphonic acid10
Phosphate-free medium0
Open in a separate windowaResults were scored negative if the protein yield, as measured by the method of Binks et al. (1), was less than 20% of that of the positive control containing 1 mM inorganic phosphate. Results are means of duplicates which on no occasion varied by more than 5%. b2AEP was also metabolized as the sole carbon, nitrogen, and phosphorus source. No in vitro cleavage of the C—P bond of phosphonoalanine was detected in cell extracts of B. cepacia Pal6 grown on the compound, nor did such extracts contain detectable phosphonatase or phosphonoacetate hydrolase activities when assayed by the methods of La Nauze et al. (12) and McMullan and Quinn (16), respectively. The only other documented enzyme capable of in vitro-detectable C—P bond cleavage is phosphoenolpyruvate phosphomutase, which catalyses the reversible intramolecular rearrangement of phosphonopyruvate to phosphoenolpyruvate (PEP); it has been implicated in the utilization of phosphonoalanine as the sole phosphorus source by Pseudomonas gladioli B-1 (19, 20). The initial step in this catabolic pathway is the transamination of phosphonoalanine to phosphonopyruvate (20); no such activity was detected in cells of B. cepacia Pal6 grown on phosphonoalanine. However, extracts prepared from d,l-phosphonoalanine-grown cells did indeed contain PEP phosphomutase activity when assayed by the method of Nakashita et al. (19); this was inducible above a basal level (some 17% of the maximum) in the presence of dl-phosphonoalanine. The induction of PEP phosphomutase activity in resting cells of B. cepacia Pal6 pregrown on complete mineral salts medium and resuspended (1 g of cells/50 ml) with dl-phosphonoalanine as a sole carbon, nitrogen, and phosphorus source is shown in Fig. Fig.3.3. Open in a separate windowFIG. 3Induction of PEP phosphomutase activity in resting cells of B. cepacia Pal6 pregrown on complete medium and resuspended in mineral salts containing 8 mM phosphonoalanine as a carbon, nitrogen, and phosphorus source. Symbol: •, PEP phosphomutase activity.PEP phosphomutase activity in cell extracts was obtained only when phosphonopyruvate was supplied as a substrate, with no activity being observed in the presence of phosphonoalanine, 2AEP, phosphonoacetaldehyde, or phosphonoacetate. No activity was obtained in the control assays lacking either cell extract or phosphonopyruvate. That this activity is responsible for cleavage of the C—P bond of phosphonoalanine cannot be definitely confirmed, however, in the absence of a mutant strain of B. cepacia Pal6 deficient in PEP phosphomutase activity. It is unlikely, given the previously demonstrated involvement of PEP phosphomutase in the utilization of phosphonoalanine by P. gladioli B-1 as the sole phosphorus source (19, 20), that the enzyme is merely gratuitously induced by phosphonoalanine in B. cepacia Pal6. Moreover, the hypothesis that PEP phosphomutase is responsible for the cleavage of the C—P bond of phosphonoalanine via a phosphonopyruvate intermediate is also strengthened by the fact that activity of none of the existing known C—P bond-cleaving enzymes was obtained in cell extracts of B. cepacia Pal6.As cells of B. cepacia Pal6 grown on mineral salts supplemented with carbon, nitrogen, and phosphorus sources in the absence of phosphonoalanine were observed to have relatively high levels of constitutive PEP phosphomutase activity (Fig. (Fig.3),3), it was considered likely that the organism, like P. gladioli B-1, would also be capable of producing a C—P bond-containing compound. A sample of broth was taken prior to inoculation and again following 24-h growth of B. cepacia Pal6 on complete medium containing 5 mM inorganic phosphate as the sole source of phosphorus. 31P-labeled nuclear magnetic resonance spectra were obtained for both samples (19), and a new signal, with a shift relative to inorganic phosphate of 13.20 ppm, was observed in the 24-h sample. The experiment was repeated, with identical results. The shift obtained for the unknown compound was similar, but did not correspond, to those shifts obtained for 2-phosphonoacetaldehyde (5.55 ppm), phosphonopyruvate (6.40 ppm), 2-aminoethylphosphonate (15.90 ppm), or phosphonoalanine (14.03 ppm). The appearance of this additional resonance thus suggests the production of a C—P bond-containing compound and is further confirmation of the presence of PEP phosphomutase activity in B. cepacia Pal6.The phosphonoalanine biodegradation pathway in B. cepacia Pal6 would appear to be different from that described for both rats and Tetrahymena (8). In cell-free preparations from these organisms, phosphonoalanine biodegradation was shown to involve a deamination to phosphonopyruvate, which is converted by decarboxylation to 2-phosphonoacetaldehyde, followed by either dephosphonylation or amination of the aldehyde to give acetaldehyde or 2AEP, respectively (8). In B. cepacia Pal6, PEP produced by the intramolecular rearrangement of phosphonopyruvate by PEP phosphomutase would readily enter intermediary metabolism, serving as a carbon and phosphorus source with excess phosphorus being excreted as Pi.The isolation of three different phosphonoalanine-degrading microorganisms by enrichment culture suggests that this ability may be relatively common in the natural environment. Phosphonoalanine is a biogenic organophosphonate; it is therefore unsurprising that microbial systems for its effective utilization exist. In addition to being capable of producing a C—P bond-containing compound, B. cepacia Pal6 is the first microorganism reported to mineralize the l-enantiomer of phosphonoalanine and joins a growing number of reports of microorganisms capable of deregulated scission of the C—P bond of organophosphonates.  相似文献   

5.
Wild-type Streptomyces sp. strains, able to utilise both naturally occurring and synthetic organophosphonates, were isolated. High levels of inorganic phosphate were necessary for their growth in complete medium as well as in medium, supplemented with phosphonates as the sole carbon or nitrogen source. Isolate StA expressed detectable enzymatic activity against 2-aminoethylphosphonate in vivo. Streptomycete StC had a surprising ability to degrade N-phosphonomethylglycine (glyphosate) in a phosphate-independent manner via C–P bond cleavage accompanied by sarcosine formation. Received: 5 January 1999 / Received revision: 8 March 1999 / Accepted: 14 March 1999  相似文献   

6.
A novel, inducible carbon-phosphorus bond cleavage enzyme, phosphonopyruvate hydrolase, was detected in cell-free extracts of Burkholderia cepacia Pal6, an environmental isolate capable of mineralising L-phosphonoalanine as carbon, nitrogen and phosphorus source. The activity was induced only in the presence of phosphonoalanine, did not require phosphate starvation for induction and was uniquely specific for phosphonopyruvate, producing equimolar quantities of pyruvate and inorganic phosphate. The native enzyme had a molecular mass of some 232 kDa and showed activation by metal ions in the order Co2+ > Ni2+ > Mg2+ > Zn2+ > Fe2+ > Cu2+. Temperature and pH optima in crude cell extracts were 50 degrees C and 7.5, respectively, and activity was inhibited by EDTA, phosphite, sulfite, mercaptoethanol and sodium azide. Phosphonopyruvate hydrolase is the third bacterial C-P bond cleavage enzyme reported to date that proceeds via a hydrolytic mechanism.  相似文献   

7.
8.
The presence of low choline or betaine concentrations in a culture medium containing succinate, NH4Cl, and inorganic phosphate (Pi) as the carbon, nitrogen, and phosphate sources, respectively, permits the growth ofPseudomonas aeruginosa in a hyperosmolar medium. Dimethylglycine, acetylcholine, and phosphorylcholine were less effective as osmoprotectants than choline or betaine. Other alkylammonium compounds tested were virtually ineffective in this capacity. Bacterial growth was also observed in a hyperosmolar medium when choline was the sole carbon and nitrogen source. Choline could act as an osmoprotectant under all the conditions tested. However, the production of cholinesterase (ChE), acid phosphatase (Ac. Pase) and phospholipase C (PLC) took place only when choline was the carbon and nitrogen source. This fact confirms that the synthesis of PLC may occur even in the presence of a high Pi concentration in the medium. Inasmuch as in a high-Pi medium the synthesis of PLC and Ac. Pase (phosphorylcholine phosphatase) is dependent only on choline metabolism, it is postulated that both enzymes are involved in a set of reactions coordinated to produce the breakdown of the membrane phospholipids of the host cell in a hyperosmotic medium.  相似文献   

9.
Heterologous expression of a phytase gene (phyC) from Bacillus amyloliquefaciens DSM 7 enabled the growth of Corynebacterium glutamicum with phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate) as a new, sole source of phosphorus. Phytate was not used as a carbon source. During growth of the phyC-expressing amino acid (l-lysine)-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) with phytate as the source of phosphorus, merely a small, transient accumulation of inorganic phosphate was observed in the fermentation broth. At the later stages of fermentation, free inorganic phosphate from phytate degradation was no longer detectable. Growth and l-lysine production by the phytase-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) in phytate medium did not differ significantly from control experiments with strain C. glutamicum ATCC 21253 (pWLQ2) conducted with an excess of inorganic phosphate, demonstrating that there was no phosphate limitation when phytate was used as the phosphorus source. Under the expression conditions employed, only part of PhyC was secreted to the culture broth by C. glutamicum, but this did not significantly affect growth or lysine production.  相似文献   

10.
A variety of microorganisms have the ability to use phosphonic acids as sole sources of phosphorus. Here, a novel pathway for degradation of 2-aminoethylphosphonate in the bacterium Sinorhizobium meliloti 1021 is proposed based on the analysis of the genome sequence. Gene deletion experiments confirmed the involvement of the locus containing phnW, phnA, and phnY genes in the conversion of 2-aminoethylphosphonate to inorganic phosphate. Biochemical studies of the recombinant PhnY and PhnA proteins verified their roles as phosphonoacetaldehyde dehydrogenase and phosphonoacetate hydrolase, respectively. This pathway is likely not limited to S. meliloti as suggested by the presence of homologous gene clusters in other bacterial genomes.  相似文献   

11.
Utilization of organophosphonates as the sole source of phosphorus, carbon or nitrogen by a soil isolate of Penicillium citrinum was studied. Penicillium citrinum was found to utilize 2-aminoethylphosphonic and 2-oxoalkylphosphonic acids as the sole phosphorus source whereas 1-hydroxyalkylphosphonates as well as 1-aminoalkylphosphonates and their dipeptides did not support the growth of the fungus. The mould did not metabolize any of the phosphonates tested, when they served as the sole carbon or nitrogen source.
Penicillium citrinum is perhaps the first mould strain isolated from soil, shown to be capable of organophosphonate degradation.  相似文献   

12.
Effect of various fermentation media, carbon sources, nitrogen sources, phosphate concentration and culture requirements includes inoculum levels and age were determined on gentamicin production and biomass dry weight production for Micromonospora echinospora, a gentamicin producing strain. Of the substrates tested, starch as a sole carbon source promoted maximal gentamicin production, while maltose promoted maximal growth. Yeast extract as a sole nitrogen source promoted maximal growth, while soyabean meal for gentamicin production. Increasing phosphate concentration enhanced gentamicin production and observed optimum production at 1.2 g/1 (6% v/v) of phosphate having 72 h old inoculum in the medium. Highest gentamicin production was obtained after cultivation with shaking for 120 h in a medium containing starch 0.75% (w/v), soyabean meal 0.5%, K2HPO4 0.12%, CaCO3 0.4%, FeSO4 0.003% and CoCl2 0.0001%. The gentamicin production was 1.2-fold in this medium as compared to basal medium.  相似文献   

13.
Monocrotophos (dimethyl (E)-1-methyl-2-(methylcarbamoyl) vinyl phosphate, or MCP), an organophosphorus insecticide, was used as a sole phosphorus source by the microorganisms isolated from the soil. None of the isolates could utilize MCP as a sole source of carbon. Two of the potential microbial isolates, Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11, could utilize MCP as a sole source of phosphorus. Pseudomonas aeruginosa F10B showed a lag phase of 4 h, while in the case of C. michiganense subsp. insidiosum SBL 11, it was 8 h when cultured in the presence of MCP. The generation time for both strains was increased in the medium containing MCP. It was 2.15 h for P. aeruginosa F10B in MCP medium as compared with 1.29 h in basal medium, while in case of C. michiganense subsp. insidiosum SBL 11 it was increased to 3.4 h in MCP medium as compared with 1.28 h in basal medium. These two strains were able to degrade technical MCP in shake-flask culture up to 98.9 and 86.9%, respectively, and pure MCP up to 79 and 80%, respectively, within 24 h at 37 degrees C. The optimal concentration of MCP required for the normal growth was 500 ppm. In the substrate preference study, Tris-p-nitrophenyl phosphate was the most preferred substrate followed by paraoxon. The enzyme responsible for the break down of MCP was phosphotriesterase, which was localized on the membrane-bound fraction of the disrupted cells. The gene responsible for the production of phosphotriesterase (opd) in P. aeruginosa F10B was plasmid-borne.  相似文献   

14.
以经过二次过滤的富营养化鱼塘养殖污水为培养液,添加外源的碳、氮、磷元索,研究了污水中不同的外源无机碳、总氮和总磷浓度对布朗葡萄藻(Botryococcus braunii)生物量、总脂和总烃含量的影响.结果表明:(1)以NaHCO3作为碳源,布朗葡萄藻的生物量和总脂含量在外源无机碳浓度为5~10 mg/L时最高,总烃含量在外源无机碳浓度为15mg/L时最高.(2)以KNO3作为氮源,布朗葡萄藻的生物量在总氮浓度为15mg/L时最高,总脂含量在总氮浓度为2mg/L时最高,总烃含量在总氮浓度为20mg/L时最高.(3)以KH2 PO4作为磷源,布朗葡萄藻生物量在总磷浓度为2mg/L时最高,总脂含量和总烃含量在总磷浓度为1.5 mng/L时最高.  相似文献   

15.
A total of 24 bacterial isolates able to grow on metal-working fluids were obtained from soil or metal-working fluids (both in-use and heavily contaminated fluids). Pure cultures of the isolates were tested for their ability to degrade a selection of components, including borate esters, phosphate ester, biocide and triethanolamine, typically found in synthetic metal-working fluids. All components, when present at a level equivalent to half that found in an in-use metal-working fluid, supported growth when utilised as the sole source of carbon and/or nitrogen. Each component was degraded by at least 50% by an individual isolate within 120 hours in batch liquid culture.  相似文献   

16.
17.
Abstract

Sediments from the Emilia Romagna coast, an area periodically subjected to eutrophication, were investigated to determine the organic carbon and nitrogen content from the solid phase and organic and inorganic phosphorus, nitrogen and N/P ratio from a liquid elutriate from these sediments. The elutriates were tested for growth using a bioassay with a Gymnodinium sp. which previously caused extensive blooms in the Adriatic. Cultures were grown in the elutriates either enriched or unenriched with F/2 medium. Comparisons with controls were made on the basis of the maximum standing stock. The results obtained with the unenriched elutriates demonstrated the primary role of phosphate, while enriched elutriates produced slighter enhancement than the control. In most cases, the chemical composition of the elutriate was characterized by a negligible phosphate concentration, with respect to ammonium: the nutrient balance did not agree with the nutritional algal requirement. However, all the elutriates showed large quantities of inorganic and organic nitrogen. This finding could indicate that sediment-bound nitrogen may be a ready source of nitrogen for algal growth.  相似文献   

18.
Photoassimilation of Glycolate, Glycine and Serine by Euglena gracilis   总被引:1,自引:0,他引:1  
SYNOPSIS. Glycolate was readily utilized for growth by Euglena gracilis , strain Z, in the light at pH 3.8 under a variety of atmospheric conditions, including CO2-free air and nitrogen. Glycolate did not support growth in the dark as sole carbon source; no significant uptake of glycolate was observed under these conditions. However, cells grown in the light with glycolate as sole carbon source were still capable of glycolate uptake for up to 3 hr after transfer to darkness, and glycolate was taken up by cells utilizing glucose in the dark. The energy requirement for glycolate utilization could thus be met either by light, or by the aerobic metabolism of glucose in the dark. DCMU, an inhibitor of photosystem II, inhibited photoassimilation of glycolate. In the light, but again not in the dark, glycine and serine also served as sole source of carbon under CO2-free air, but not under nitrogen. Net release of ammonia to the medium accompanied the photoassimilation of glycine and serine. Of the several metabolicallyrelated compounds tested, only glycolate was utilized as sole carbon source in the light under "anaerobic" conditions. A lag in net chlorophyll synthesis occurred during the photoassimilation of glycolate glycine or serine. Determination of rates of photosynthetic 14CO2 fixation confirmed that some inhibition of photosynthetic capacity had occurred in response to utilization of glycolate and related compounds.  相似文献   

19.
Abstract The halophilic phototrophic bacterium Rhodospirillum salexigens was tested for growth on a variety of organic and inorganic nitrogenous compounds as sole nitrogen sources. In media containing acetate as carbon source, the amino acids glutamate, proline, and aspartate supported good growth of R. salexigens ; several other amino acids or ammonia did not support growth. Attempts to grow R. salexigens on ammonia led to the discovery that this organism excretes a highly basic substance under certain nitrogen nutritional conditions which raises the pH above that supporting growth. Cultures of R. salexigens transferred to media containing both pyruvate and acetate as carbon sources grew on ammonia as sole nitrogen source and the culture pH did not rise. Dual substrate experiments showed that R. salexigens utilized glutamate in preference to ammonia when both were present at equimolar concentrations.  相似文献   

20.
Among a collection of 18 fungal strains representing eight genera, only two strains (Penicillium oxalicum and P. minioluteum) were capable of growth on phosphonoacetic acid as sole phosphorous source. Enrichment liquid cultures in minimal medium with the compound as the only P-source selected four isolates, that were also identified as Penicillium spp. Phosphonoacetate metabolism did not lead to extracellular release of inorganic phosphate. In all cases phosphonoacetate hydrolase activity was detected in partially purified extracts, and a protein of the expected molecular mass reacted with polyclonal antibodies raised against the enzyme from P. oxalicum. There was no relation between phosphonoacetate hydrolase specific activity and growth rate or yield. Phosphonoacetic acid was the inducer of the hydrolase, independently of the concurrent availability of inorganic phosphate. Notwithstanding this, the utilization of the phosphonate was significantly inhibited in the presence of phosphate, suggesting an interference of the latter with phosphonoacetic acid uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号