首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two pot experiments and one field experiment were conducted on sugarcane to assess the effects of treatments expected to change total carbon assimilation on the partitioning of assimilate. In the first experiment pots of cultivars CP and N14 were arranged to simulate normal field spacing. At 5 months, plants were partially defoliated or left intact. In the subsequent four months, defoliation resulted in a small (not significant) decrease in total dry mass increment; it increased the proportional partitioning of assimilates to leaves in N14, whilst in CP it increased the proportional partitioning to stems. In both cultivars defoliation increased proportional allocation to non-structural dry matter, and thus sucrose, in the stem. In the second experiment pots of cv. CP were grown at normal spacing for 4 months, then left untreated, shaded, or placed further apart. During the subsequent four months shading decreased total dry matter increment, but increased proportional partitioning to the stems, and within stems to non-structural dry matter, and so sucrose. Widened spacing increased total assimilation, but decreased proportional allocation to stems; partitioning within the stems was not affected. In the field experiment plants of both cultivars were partially defoliated at 6 months, or left intact. Defoliation resulted in only a very small decrease in stem dry mass increment during the subsequent four months (leaves were not measured). Within the stem partial defoliation caused proportionally increased partitioning to non-structural dry matter, hence to sucrose. The results suggest that sucrose storage receives priority in the allocation of assimilate, rather than representing the accumulation of assimilate not required for vegetative growth.  相似文献   

2.
BACKGROUND AND AIMS: Both nutrient availability and defoliation affect the carbon-nutrient balance in plants, which in turn influences biomass allocation (e.g. shoot-to-root ratio) and leaf chemical composition (concentration of nitrogen and secondary compounds). In this study it is questioned whether defoliation alters biomass allocation and chemical defence in a similar fashion to the response to nutrient deficiency. METHODS: Current-year seedlings of Quercus serrata were grown with or without removal of all leaves at three levels of nutrient availability. KEY RESULTS: Plant nitrogen concentration (PNC), a measure of the carbon-nutrient balance in the plant, significantly decreased immediately after defoliation because leaves had higher nitrogen concentrations than stems and roots. However, PNC recovered to levels similar to or higher than that of control plants in 3 or 6 weeks after the defoliation. Nitrogen concentration of leaves produced after defoliation was significantly higher than leaf nitrogen concentration of control leaves. Leaf mass per plant mass (leaf mass ratio, LMR) was positively correlated with PNC but the relationship was significantly different between defoliated and control plants. When compared at the same PNC, defoliated plants had a lower LMR. However, the ratio of the leaf to root tissues that were newly produced after defoliation as a function of PNC did not differ between defoliated and control plants. Defoliated plants had a significantly lower concentration of total phenolics and condensed tannins. Across defoliated and control plants, the leaf tannin concentration was negatively correlated with the leaf nitrogen concentration, suggesting that the amount of carbon-based defensive compounds was controlled by the carbon-nutrient balance at the leaf level. CONCLUSIONS: Defoliation alters biomass allocation and chemical defence through the carbon-nutrient balance at the plant and at the leaf level, respectively.  相似文献   

3.
On the basis of an artificial defoliation experiment, a new growth model of soybean was formulated through a modification of Rudd's (1980) model with regard to his equations for dry matter allocation. Compensatory growth for leaf damage was modelled by a single process in which the dry matter allocation changes dynamically according to the severity of leaf damage. The sums of squared differences between simulations and experimental soybean yields were much smaller in our modified model than in Rudd's original model. The modified model gave a better simulation of yield loss due to defoliation that varied in time and intensity. The relationship between various times and intensities of defoliation and yield loss was shown, which is essential for establishing the dynamic economic injury level in IPM.  相似文献   

4.
The growth, morphology and carbon allocation patterns of F1progeny white clover (Trifolium repens L.) plants selected foreither low (‘LBF’) or high (‘HBF’) frequencyof stolon branching were compared in two controlled-environmentexperiments. Selections from within both a small-leaved (‘GrasslandsTahora’) and a large-leaved (‘Grasslands Kopu’)clover cultivar were compared, and plants were grown under arelatively lenient defoliation treatment (expt 1) or under threelevels of defoliation seventy (expt 2). Carbon allocation patternswere measured by 14CO2 pulse-chase labelling using fully unfoldedleaves on the main (parent) stolon. LBF and HBF displayed consistent differences in the selectedcharacter though, within cultivars, the difference between selectionswas most pronounced for Kopu. The selections developed fundamentallydifferent branching structures resulting from differences inbranching frequency, with total branch weight per plant averaging122 mg for LBF and 399 mg for HBF (mean of both experiments).More C moved from parent stolon leaves to branches in HBF thanin LBF (mean 22.6% vs. 15.1% respectively of the 14C exportedfrom source leaves). More C also moved to stolon tissue in HBF,but, counterbalancing this and the difference in allocationto branches, less moved to developing leaves and roots on theparent stolon itself compared to LBF. However, the total weightof developing leaves and roots per parent stolon was generallygreater in HBF than in LBF, probably reflecting greater C importby these sinks from the higher number of branches present perplant in the former selection. HBF plants were consistentlylarger at harvest than LBF plants. There were no defoliationtreatment x selection interactions in C allocation patternsin expt 2. The implications of the results for plant performancein grazed pastures are discussed. Branching, carbon translocation, defoliation, growth, morphology, Trifolium repens, white clover  相似文献   

5.
Summary The dwarf shrub Indigofera spinosa Forsk. (Papilionacea), a native forage species of arid Northwest Kenya, was propogated from seed, grown in a controlled environment, and subjected to three treatments of defoliation and watering frequencies in a factorial experimental design. Biomass production and nitrogen accumulation in tissue components were measured to determine defoliation responses in a water-limited environment. We hypothesized that plants would maintain biomass and nitrogen flows despite removal of aboveground meristems and tissues by defoliation. Principal experimental results included a slight reduction (11%; P=0.08) of total biomass production by clipping ca. 1/3 or 2/3 of new leaves and stems and all apical meristems every month. Total aboveground production was not affected by clipping, while final root biomass was reduced 17% by the 2/3 clipping. The least water stressed plants were affected most negatively by defoliation, and the unclipped plants responded more negatively to greater water limitation. Plants achieved partial biomass compensation through alterations in shoot activity and continued allocation of photosynthate to roots. A smaller fraction of leaf production was directed to litter in clipped plants although clipping only removed the youngest tissues, suggesting that clipping increased leaf longevity. In turn, each leaf probably contributed a greater total quantity of photosynthate. Photosynthetic rates were also likely to have been increased by clipping water-stressed plants. In contrast to biomass, plants overcompensated for nitrogen lost to defoliation. Total nitrogen uptake by individual plants was stimulated by defoliation, as there was more total nitrogen in leaves and stems. Increased nitrogen uptake was achieved by clipping stimulation of total uptake per unit of root rather than of total root mass.  相似文献   

6.

Aims

Regrowth of dual-purpose canola after grazing is important for commercial success and the aim of this research was to investigate the effects of defoliation on the development, growth, photosynthesis and allocation of carbohydrates.

Methods

We conducted two pot experiments in which defoliation was conducted at multiple intensities with scissors. Experiment 1 determined changes in flowering date due to defoliation while Experiment 2 investigated the effects of defoliation on growth, photosynthesis and allocation of carbohydrates in canola.

Results

Time to the appearance of the first flower was delayed by up to 9 days after the removal of all leaves at the start of stem elongation (GS30), and up to 19 days if the elongating bud was also removed. Stem growth rate decreased by 56–86 % due to defoliation and tap roots did not increase in mass when plants were completely defoliated. Leaf area continued to expand at the same rate as in un-defoliated plants. The new leaf area established per gram of regrowth biomass over 20 days was 158 cm2.g-1 for the complete defoliation treatments compared with 27 cm2.g?1 for the half-defoliated treatment and 13 cm2.g?1 for the un-defoliated treatment. Despite a reduction in total biomass of up to 60 %, the proportion of dry matter partitioned to the leaves was 18 % for all treatments within 20 days after defoliation. Total non-structural carbohydrate levels were reduced rapidly in the stem by day two (predominately sucrose) and the tap root by day four (predominately starch) after defoliation and did not recover to match un-defoliated plant levels within 20 days. Residual leaves on defoliated plants maintained photosynthetic rate compared with the same leaf cohorts on un-defoliated plants in which photosynthetic rate decreased to 39 % by day 12.

Conclusions

The rapid recovery of leaf area in defoliated canola was facilitated by the sustained high photosynthetic rate in remaining leaves, rapid mobilisation of stored sugars (stem) and starch (root), and a cessation of root and stem growth.  相似文献   

7.
Tolerance and resistance are defence strategies evolved by plants to cope with damage due to herbivores. The introduction of exotic species to a new biogeographical range may alter the plant–herbivore interactions and induce selection pressures for new plant defence strategies with a modified resource allocation. To detect evolution in tolerance to herbivory in common ragweed, we compared 3 native (North America) and 3 introduced (France) populations, grown in a common garden environment. We explored the effect of leaf herbivory on plant vegetative and reproductive traits. Plants were defoliated by hand, simulating different degrees of insect grazing by removing 0%, 50% or 90% of each leaf blade. Total and shoot dry biomasses were not affected by increasing defoliation, whereas root dry biomass and root:shoot ratio decreased significantly for native and introduced populations. Furthermore, defoliation treatments did not affect any of the plant reproductive traits measured. Hence, common ragweed displayed an efficient reallocation of resources in shoot biomass at the expense of roots following defoliation, which allows the species to tolerate herbivory without obvious costs for fitness. We did not detect any difference in herbivory tolerance between introduced and native populations, but significant differences were found in reproduction with invasive populations producing more seeds than native populations. As a result, tolerance to herbivory has been maintained in the introduced plant populations. We discuss some implications of these preliminary results for biological control strategies dedicated to common ragweed.  相似文献   

8.
The aim of the study was to evaluate the impact of defoliation intensity, defoliation frequency, and interactions with N supply on N uptake, N mobilization from and N allocation to roots, adult leaves, and growing leaves. Plants of Lolium perenne were grown under two contrasted N regimes. Defoliation intensity treatments consisted of a range of percentage leaf area removal (0, 25, 50, 75, or 100%). These treatments were applied in parallel to a set of plants previously undefoliated, and to a second set of plants which had been defoliated several times at a constant height. A (15)N tracer technique was used to quantify N uptake, mobilization, and allocation over a 7 d period. A significant reduction in plant N uptake was observed with the removal of more than 75% of lamina area, but only with high N supply. As defoliation intensity increased, the amount of N taken up and subsequently allocated to growing leaves during the labelling period was maintained at the expense of N allocation to roots and adult leaves. Increasing defoliation intensity increased the relative contribution of roots supplying mobilized N to growing leaves and decreased the relative contribution of adult leaves. Defoliation frequency did not substantially alter N uptake, mobilization, and allocation between roots, adult and growing leaves on a plant basis. However, tiller number per plant was largely increased under repeated defoliation, hence indicating that allocation and mobilization of N to growing leaves, on the basis of individual tillers, was decreased by defoliation frequency.  相似文献   

9.
Among plants grown under enriched atmospheric CO2, root:shoot balance (RSB) theory predicts a proportionately greater allocation of assimilate to roots than among ambient‐grown plants. Conversely, defoliation, which decreases the plant's capacity to assimilate carbon, is predicted to increase allocation to shoot. We tested these RSB predictions, and whether responses to CO2 enrichment were modified by defoliation, using Heterotheca subaxillaris, an annual plant native to south‐eastern USA. Plants were grown under near‐ambient (400 μmol mol?1) and enriched (700 μmol mol?1) levels of atmospheric CO2. Defoliation consisted of the weekly removal of 25% of each new fully expanded, but not previously defoliated, leaf from either rosette or bolted plants. In addition to dry mass measurements of leaves, stems, and roots, Kjeldahl N, protein, starch and soluble sugars were analysed in these plant components to test the hypothesis that changes in C:N uptake ratio drive shifts in root:shoot ratio. Young, rapidly growing CO2‐enriched plants conformed to the predictions of RSB, with higher root:shoot ratio than ambient‐grown plants (P < 0.02), whereas older, slower growing plants did not show a CO2 effect on root:shoot ratio. Defoliation resulted in smaller plants, among which both root and shoot biomass were reduced, irrespective of CO2 treatment (P < 0.03). However, H. subaxillaris plants were able to compensate for leaf area removal through flexible shoot allocation to more leaves vs. stem (P < 0.01). Increased carbon availability through CO2 enrichment did not enhance the response to defoliation, apparently because of complete growth compensation for defoliation, even under ambient conditions. CO2‐enriched plants had higher rates of photosynthesis (P < 0.0001), but this did not translate into increased final biomass accumulation. On the other hand, earlier and more abundant yield of flower biomass was an important consequence of growth under CO2 enrichment.  相似文献   

10.
Summary Effects of calcium phosphate supply on plant dry matter and phosphorus concentrations of parts of jarrah (Eucalyptus marginata) seedlings grown in a lateritic topsoil from the jarrah forest were examined in two glasshouse trials. Phosphorus deficiency depressed root and shoot dry weights and severely deficient leaves were smal and purple with prominent red major veins. Phosphorus deficiency severely reduced stem phosphorus levels (0.5% to 0.02%, experiment 1). Phosphorus concentrations were higher in bark than wood and the amount of phosphorus in the bark was sensitive to stem age and phosphate supply. Phosphorus adequate plants had bark phosphorus concentrations in the range 0.2–0.9% compared to <0.1% in deficient plants (experiment 2). Jarrah leaves accumulated dry matter up to 80 days after expansion and some leaves exported phosphorus during this period. Bark analysis may therefore be preferable to leaf analysis for detecting phosphorus deficiency in this species.  相似文献   

11.
Eucalyptus tereticornis was grown in a green house in a low phosphorus (0.67 ppm Olsen's P) soil (Typic Haplustalf) inoculated with mixed indigenous arbuscular mycorrhizal (AM) fungi. Soil was amended to achieve P levels of 10, 20, 25, 30 and 40 ppm to evaluate the growth response and dependence of E. tereticornis to inoculation with AM fungi. A positive response to mycorrhizal inoculation was evident at the first two levels of soil P, i.e., at 0.67 and 10 ppm but not at the higher levels of soil P. Dry matter yield of inoculated plants beyond 20 ppm soil P was similar or even less compared to their uninoculated counterparts. Inoculated plants produced maximum dry matter (root and shoot) at 10 ppm soil P, whereas uninoculated plants did not produce until the level reached 20 ppm. The percentage root length colonized by AM fungi decreased from 31% to 3% as the concentration of P increased beyond 10 ppm soil P. Higher levels of soil P depressed the AM colonization significantly. Inoculated plants had higher shoot P and N contents compared to their uninoculated counterparts at all levels of soil P. However, at the first two lower levels of soil P, inoculated plants showed significantly higher shoot P and N contents over their respective uninoculated counterparts. The increasing shoot P accumulation beyond 10 ppm did not enhance dry matter yields. Inoculated plants had lower values of phosphorus utilization efficiency (PUE) and nitrogen utilization efficiency (NUE) at all levels of soil P except at the unamended level (0.67 ppm) where the inoculated plants showed higher values of NUE compared to uninoculated control plants. Taking dry matter yield into consideration, Eucalyptus plants were found to be highly dependent on 10 ppm of soil P for maximum dry matter production. Any further amendment of P to soil was not beneficial neither for AM symbiosis nor plant growth.  相似文献   

12.
The stay-green mutation of the nuclear gene sid results in inhibition of chlorophyll degradation during leaf senescence in grasses, reducing N remobilization from senescing leaves. Effects on growth of Lolium perenne L. were investigated during N starvation (over 18 d) and after severe defoliation, when leaf growth depends on the remobilization of internal N. Rates of dry mater production, partitioning between shoots and roots, and re-partitioning of N from shoots to roots were very similar in stay-green and normal plants under N starvation. Km and Vmax for net uptake of NH4+ were also similar for both genotypes, and Vmax increased with the duration of N deprivation. The mutation had little effect on recovery of leaf growth following severe defoliation, but stay-green plants recommenced NO3- and K+ uptake 1 d later than normal plants. Import of remobilized N into new leaves was generally similar in both lines. However, stay-green plants remobilized less N from stubble compared with normal plants. It was concluded that the sid locus stay-green mutation has no significant adverse effect on the growth of L perenne during N starvation, or recovery from severe defoliation when plants are grown under an optimal regime of NO3- supply both before and after defoliation. The absence of any effect on leaf dry matter production implies that the difference in foliar N availability attributable to this mutation has little bearing on productivity, at least in the short to medium term.  相似文献   

13.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

14.
The ten year cycle of the willow grouse of Lower Kolyma   总被引:1,自引:0,他引:1  
A. Andreev 《Oecologia》1988,77(2):261-267
Summary The effects of defoliation on growth and nitrogen (N) nutrition were examined in populations of Agropyron smithii (western wheatgrass) collected from a heavily grazed black-tailed prairie dog (Cynomys ludovicianus) colony (ON-colony) and a nearby lightly grazed, uncolonized area (OFF-colony). Defoliated and nondefoliated plants were grown at low soil N availability with similar sized defoliated individuals of A. smithii from a grazing-exclosure population as a common competitor. Sequential harvests were made over 24 days following defoliation. Growth analysis plus biomass and N yield and distribution data were used to identify features which may contribute to plant defoliation tolerance. Defoliation reduced total production 34% across populations. Defoliated plants produced as much new blade tissue, but only 67% as much new root biomass as did nondefoliated controls. Plants from prairie dog colonies accumulated biomass at a faster relative rate than did plants from uncolonized sites, in part, because of a 250% greater mean relative growth rate of blades and more than 200% greater rate of biomass production per unit blade biomass. Total N accumulation was significantly greater in defoliated ON- than OFF-colony individuals. The mean relative accumulation rate of N was increased by defoliation in ON-colony plants, but reduced by defoliation in OFF-colony plants. The mean rate of N accumulation per unit root biomass was more than 300% greater in the ON- than OFF-colony population. Colony plants initially had a greater proportion of biomass and N remaining after defoliation in roots. Initial differences between populations in the distribution of biomass and N were eliminated as colony plants concentrated 24-day accumulation of biomass and N in aboveground structures. The data suggest that the combination of growth, N nutrition, and biomass and N distribution characteristics of the colony population likely confer a high rate of resource capture on heavily grazed prairie dog colonies.  相似文献   

15.
Research was conducted on Aloe vera, a traditional medicinal plant, to investigate the effects of light on growth, carbon allocation, and the concentrations of organic solutes, including soluble carbohydrates and aloin. The plants were vegetatively propagated and grown under three irradiances: full sunlight, partial (30% full sunlight), and deep shade (10% full sunlight) for 12-18 months. After 1 year of growth, five plants from each treatment were harvested to determine total above- and below ground dry mass. Four plants from the full sunlight and the partial shade treatments were harvested after 18 months to assess the soluble carbohydrate, organic acid and aloin concentrations of the clear parenchyma gel and the yellow leaf exudate, separately. Plants grown under full sunlight produced more numerous and larger axillary shoots, resulting in twice the total dry mass than those grown under partial shade. The dry mass of the plants grown under deep shade was 8.6% that of plants grown under full sunlight. Partial shade increased the number and length of leaves produced on the primary shoot, but leaf dry mass was still reduced to 66% of that in full sunlight. In contrast, partial and deep shade reduced root dry mass to 28 and 13%, respectively, of that under full sunlight, indicating that carbon allocation to roots was restricted under low light conditions. When plants were sampled 6 months later, there were only minor treatment effects on the concentration of soluble carbohydrates and aloin in the leaf exudate and gel. Soluble carbohydrate concentrations were greater in the gel than in the exudate, with glucose the most abundant soluble carbohydrate. Aloin was present only in the leaf exudate and higher irradiance did not induce a higher concentration. Limitation in light availability primarily affected total dry mass production and allocation, without substantial effects on either primary or secondary carbon metabolites.  相似文献   

16.
Summary The effect of full sunlight, 60%, or 90% attenuated light on photosynthetic rate, growth, leaf morphology, dry weight allocation patterns, phenology, and tolerance to clipping was examined in the glasshouse for steppe populations of the introduced grass, Bromus tectorum. The net photosynthetic response to light for plants grown in shade was comparable to responses for plants grown in full sunlight. Plants grown in full sunlight produced more biomass, tillers and leaves, and allocated a larger proportion of their total production to roots than plants grown in shade. The accumulation of root and shoot biomass over the first two months of seedling growth was primarily responsible for the larger size at harvest of plants grown in full sunlight. Plants grown under 60% and 90% shade flowered an average of 2 and 6 weeks later, respectively, than plants grown in full sunlight. Regrowth after clipping was greater for plants grown in full sunlight compared to those grown in shade. Even a one-time clipping delayed flowering and seed maturation; the older the individual when leaf area was removed, the greater the delay in its phenology. Repeated removal of leaf area was more frequently fatal for plants in shade than in full sunlight. For plants originally grown in full sunlight, regrowth in the dark was greater than for shaded plants and was more closely correlated to non-flowering tiller number than to plant size. This correlation suggests that etiolated regrowth is more likely regulated by the number of functional meristems than by differences in the size of carbohydrate pools. Thus, shading reduces the rate of growth, number of tillers, and ability to replace leaf area lost to herbivory for B. tectorum. These responses, in turn, intensify the effect of competition and defoliation for this grass in forests. B. tectorum is largely restricted to forest gaps at least in part because of its inability to acclimate photosynthetically, the influence of shade on resource allocation, and the role of herbivory in exacerbating these effects.  相似文献   

17.
 The effects of an arbuscular mycorrhizal (AM) fungus and drought stress on the growth, phosphorus, and micronutrient uptake of two wheat genotypes exhibiting differences in drought resistance were investigated. Plants were grown on a low P (4 mg kg–1 soil) silty clay (Typic Xerochrept) soil-sand mix. Mycorrhizal infection was higher under well-watered than under dry soil conditions and the drought-resistant genotype CR057 had a higher mycorrhizal colonization than the drought-sensitive genotype CR006. Total and root dry matter yields and total root length were higher in mycorrhizal than in nonmycorrhizal plants of both genotypes. CR057 had higher total dry matter but not root dry matter than CR006 plants. The enhancement in total dry matter due to AM inoculation was 42 and 39% under well-watered and 35 and 45% under water-stressed for CR057 and and CR006, respectively. For both genotypes, the contents of P, Zn, Cu, Mn, and Fe were higher in mycorrhizal than in nonmycorrhizal plants and higher under well-watered than under dry soil conditions. The enhancement of P, Zn, Cu, Mn, and Fe uptake due to AM inoculation was more pronounced in CR006 than in CR057, particularly under water-stressed conditions. Thus CR006 benefitted from AM infection more than the CR057 under dry soil conditions, despite the fact that CR057 roots were highly infected. It appears that CR006 is more dependent on AM symbiosis than CR057. Accepted: 12 February 1997  相似文献   

18.
To study the direct effects of photosynthesis on allocation of biomass by altering photosynthesis without altering leaf N or nitrate content, phosphoribulokinase (PRK) activity was decreased in transgenic tobacco (Nicotiana tabacum L.) with an inverted tobacco PRK cDNA and plants were grown at different N levels (0.4 and 5 mM NH4NO3). The activation state of PRK increased as the amount of enzyme was decreased genetically at both levels of N. At high N a 94% decrease in PRK activity had only a small effect (20%) on photosynthesis and growth. At low N a 94% decrease in PRK activity had a greater effect on leaf photosynthesis (decreased by up to 50%) and whole-plant photosynthesis (decreased by up to 35%) than at high N. These plants were up to 35% smaller than plants with higher PRK activities because they had less structural dry matter and less starch, which was decreased by 3- to 4-fold, but still accumulated to 24% to 31% of dry weight; young leaves contained more starch than older leaves in older plants. Leaves had a higher ion and water content, and specific leaf area was higher, but allocation between shoot and root was unaltered. In conclusion, low N in addition to a 94% decrease in PRK by antisense reduces the activity of PRK sufficient to diminish photosynthesis, which limits biomass production under conditions normally considered sink limited.  相似文献   

19.
Growth of corn in saline waters   总被引:1,自引:0,他引:1  
Eight cultivars of Zea mays plus the wild species Zea diploperennis were screened for seedling saline tolerance up to 3.2% NaCl. The best performances were given by the cultivars Mo 17 and commercial Hawaiian Super Sweet Hybrid. These two were then field grown on coral-cinder beds using drip irrigation with fresh of half-strength sea water (1.5–1.7% dissolved solids). Growth and chemical data for Mo 17 at 12 weeks show reduced growth but the same percentage dry matter. Ash, protein and total sulfur were higher in saline plants, silica and total phosphorus lower. Na, K. Mg, and Cl were elevated and Ca reduced slightly. Fe was also increased in saline plants. Both Mo 17 and Super Sweet Hybrid corn flowered and produced seed which retained essentially normal viability both in fresh and salt water.  相似文献   

20.
THORNTON  B. 《Annals of botany》1991,68(6):569-576
Overwintering, rooted basal internodes of Molinia caerulea (L.)Moench were taken from the field and subjected to four nutritiontreatments [an adequate (high) and suboptimal (low) level ofnitrogen (N) x an adequate (high) and suboptimal (low) levelof phosphorus (P)] and three degrees of defoliation (12 treatmentsin total). Growth parameters were studied using both non-destructivemeasurements and destructive harvesting. High N supply and highP supply increased both the number of tillers and mass of eachtiller. Interactions between the effects of N and P did occurfor several growth variables; in general this was due to anabsence of a response to P supply at low N. Defoliation reducedthe dry weight of basal internodes and roots produced and temporarilyreduced leaf dry weight per tiller. There were no effects ofdefoliation on tillering. Interactions of defoliation with bothN supply and P supply were observed. Leaf extension rate wasincreased by defoliation at low, but not high N, and the adverseeffects of defoliation on root dry weight and root/shoot (R/S)ratios were proportionally greater at low N. The results arediscussed in relation to other investigations which have reportedcontrasting aspects of Molinia growth in response to both nutrientsand defoliation. Molinia caerulea, purple moor grass, nitrogen, phosphorus, defoliation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号