首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a variety of species, glucoprivation results in the suppression of the reproductive axis. Two experiments were performed to test the hypothesis that blockade of glucose metabolism via administration of the glucose inhibitor 2-deoxy-D-glucose (2DG) to mares would cause a modification in gonadotropin and prolactin secretion. Long-term ovariectomized mares (Experiment 1, n=4) or ovary-intact mares during the follicular phase of a synchronized estrous cycle (Experiment 2, n=4 per dose) were treated with 2DG. The dose of 2DG used in Experiment 1 was 100mg 2DG/kg BW, but because severe behavioral responses occurred, lower doses (50, 25, and 12.5mg 2DG/kg BW) were used for Experiment 2. In addition to the effects of 2DG, the pituitary responsiveness after glucoprivation was determined by an injection of gonadotropin-releasing hormone (100 microg) 6h post-treatment. In both experiments, treatment with 2DG was unaccompanied by changes in gonadotropin secretion or pituitary responsiveness. Mares treated with 100 mg 2DG/kg BW exhibited a significant increase in prolactin and mares treated with 100mg 2DG or 50mg 2DG/kg BW exhibited a significant increase in serum glucose concentrations, suggesting that glucoprivation was detected at these doses. Lower doses of 2DG did not cause significant alterations in prolactin or glucose levels. These results indicate that 2DG inhibits glucose utilization, but short-term glucoprivation via this metabolic inhibitor does not alter gonadotropin secretion in the mare. This lack of response to glucoprivation may reflect species differences in the response to glucoprivation or may be due to metabolic responses to the inhibition of glucose availability.  相似文献   

2.
Estradiol and progesterone induction of the LH surge in ovariectomized female rats requires concurrent activation of brain insulin-like growth factor 1 (IGF1) receptors. The present study determined whether brain IGF1 receptor signaling is required for estrous cyclicity in gonadally intact female rats. A selective IGF1 receptor antagonist (JB-1) or vehicle was continuously administered into the third ventricle by osmotic minipumps. Following surgical placement of the minipumps, all rats temporarily reduced food intake, lost weight, and suspended estrous cycles. Control rats resumed cycles within a few days and exhibited compensatory hyperphagia until they returned to presurgical body weight. Animals receiving JB-1 had severely delayed or absent estrous cycles, failed to show rebound feeding, and regained body weight more slowly. Vehicle-infused animals pair fed to JB-1-treated rats had even lower body weights but resumed estrous cycles sooner than those given drug alone. Chronic infusion of IGF1 alone had no effect on any of these parameters, but coinfusion of IGF1 with the antagonist completely reversed JB-1 effects on food intake and estrous cyclicity and partially reversed the effects on body weight. There were no significant differences in the expression of galanin-like peptide (Galp) or Kiss1 mRNA in the arcuate or periventricular hypothalamic area of control and JB-1-treated animals at a time point when food intake and estrous cycles were different between controls and JB-1-treated rats. These data suggest that brain IGF1 signaling is necessary for normal estrous cycles as well as compensatory hyperphagia and that IGF1 modulation of the reproductive axis is not secondary to reduced food intake.  相似文献   

3.
L Pénicaud  D A Thompson 《Life sciences》1984,35(23):2297-2302
In order to examine the role and site of action of opiates on both hunger and thirst and food and water intake in rats after short term (3 hr.) food deprivation alone or in combination with 2DG-induced glucoprivic stress, naloxone was given to rats in either the jugular vein or the lateral ventricle. Both basal and 2DG-induced food and water intake were reduced by naloxone injected either peripherally or centrally. Latencies to eat and drink were used as measures of hunger and thirst respectively. Only central injection of naloxone significantly reduced 2DG-induced but not basal hunger. These results suggest a central site of action of naloxone on both food and water intake even if some peripheral effects cannot be totally ruled out. Our findings indicate central nervous system opiate receptor involvement in the hunger response to 2DG-induced glucoprivation. In all other treatment conditions, decreases in food intake cannot be related to reduction of hunger but may be due to potentiation of satiation during opiate receptor blockade.  相似文献   

4.
Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+)/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 μmol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.  相似文献   

5.
The controls of food intake differ in male and female rats. Daily food intake is typically greater in male rats, relative to female rats, and a decrease in food intake, coincident with the estrous stage of the ovarian reproductive cycle, is well documented in female rats. This estrous-related decrease in food intake has been attributed to a transient increase in the female rat's sensitivity to satiety signals generated during feeding bouts. Here, we investigated whether sex or stage of the estrous cycle modulate the satiety signal generated by fenfluramine, a potent serotonin (5-HT) releasing agent. To examine this hypothesis, food intake was monitored in male, diestrous female, and estrous female rats after intraperitoneal injections of 0, 0.25, and 1.0 mg/kg D-fenfluramine. The lower dose of fenfluramine decreased food intake only in diestrous and estrous females, suggesting that the minimally effective anorectic dose of fenfluramine is lower in female rats, relative to male rats. Although the larger dose of fenfluramine decreased food intake in both sexes, the duration of anorexia was greater in diestrous and estrous female rats, relative to male rats. Moreover, the magnitude of the anorectic effect of the larger dose of fenfluramine was greatest in estrous rats, intermediate in diestrous rats, and least in male rats. Thus our findings indicate that the anorectic effect of fenfluramine is modulated by gonadal hormone status.  相似文献   

6.
We examined the effects of (S)-alpha -fluoromethylhistidine (FMH), an inhibitor of histidine decarboxylase, and metoprine, an inhibitor of histamine N-methyltransferase, on the locomotor activity and the brain histamine content of ICR mice. The brain histamine content was decreased by FMH (12.5 or 50 mg/kg, i.p.) and increased by metoprine (4 mg/kg, i.p.). Under these conditions, the locomotor activity and the number of rearing were significantly decreased and increased by FMH and metoprine, respectively. The higher the brain histamine content, the greater the locomotor activity and vice versa. In a previous paper [Sakai et al., Life Sciences, 48, 2397-2404 (1991)], we showed that thioperamide, a histamine H3 antagonist, which enhances the release of histamine from histaminergic neurons, in doses of 12.5 and 25 mg/kg, i.p. increases the locomotor activity, whereas it decreases the brain histamine content. Taken together, these results support the hypothesis that central histaminergic neurons may be involved in the control of state of locomotion and rearing.  相似文献   

7.
To examine the potential participation of histamine in cellular development, neonatal rats were given daily 50 mg/kg doses of alpha-fluoromethylhistidine (FMH), an irreversible inhibitor of histidine decarboxylase; previous studies have shown this regimen to deplete both neurotransmitter and nonneurotransmitter pools of histamine. No inhibition of growth was observed for either body weight, brain weight, heart weight or kidney weight; indeed, kidney weights tended to become supranormal toward weaning in the FMH-treated pups. Similarly, FMH failed to affect protein synthesis, confirming the lack of systemic toxicity of this amino acid as well as indicating that maintenance of histamine levels is not required for growth to proceed. In contrast, FMH did have a deleterious effect on development of the cardiac-sympathetic axis, with deficits in norepinephrine levels appearing during the third postnatal week. The deficits were not present in other catecholaminergic systems (brain noradrenergic or dopaminergic neurons and renal sympathetic neurons). The subnormal cardiac norepinephrine levels were preceded by a sharp increase in the turnover of norepinephrine at precisely the age at which central control of sympathetic tone first appears. The developmental effects of FMH indicate that, although it is unlikely that histamine participates in a major way in general control of cellular maturation, a more selective role for histamine as a trophic agent or neurotransmitter may exist during defined periods in nervous system development.  相似文献   

8.
We investigated the peripheral effects of an H3-receptor agonist and an H3-receptor antagonist (R)alpha-methylhistamine (Ralpha-MeHA) and thioperamide, respectively, on basal feeding and the CCK8-induced inhibition of food intake in rat. Intraperitoneal injection of thioperamide reduced food intake in a dose-dependent manner with maximal inhibition (35%, P<0.01 vs saline) at 3 mg/kg. (R)alpha-MeHA (0.3-3 mg/kg i.p.), an H3-receptor agonist alone had no effect on feeding but reversed the thioperamide-induced inhibition of food intake in a dose-dependent manner. The maximal feeding inhibitory dose of thioperamide (3 mg.kg i.p) increased by 40% and 22 % (P<0.01 vs saline) brain and stomach histamine contents, respectively. Histamine (0.3 - 6 mg/kg i.p.) and CCK-8 (3 - 30 microg/kg i.p) also inhibited food intake in a dose-dependent manner. Inhibition was 20% to 40% for histamine and 40% to 80% (P<0.01 vs saline) for CCK8. CCK-8 inhibition of feeding was increased by thioperamide and prevented by (R)alpha-MeHA in a dose-dependent way. In addition, CCK-8 did not reduce food intake if rats were pretreated with pyrilamine or ranitidine postsynaptic H1- and H2-receptor antagonists respectively. Our data suggest that the H3-receptor is involved in basal feeding. They also suggest that CCK satiety depends upon the release of histamine which acts on the H2- and H1-receptors, the final mediators of this effect.  相似文献   

9.
Abstract: The mast cell-deficient [ Ws/Ws ( W hite spotting in the skin)] rat was investigated with regard to the origin of histamine in the brain. No mast cells were detected in the pia mater and the perivascular region of the thalamus of Ws/Ws rats by Alcian Blue staining. The histamine contents and histidine decarboxylase (HDC) activities of various brain regions of Ws/Ws rats were similar to those of +/+ rats except the histamine contents of the cerebral cortex and cerebellum. As the cerebral cortex and cerebellum have meninges that are difficult to remove completely, the histamine contents of these two regions may be different between Ws/Ws and +/+ rats. We assume that the histamine content of whole brain with meninges in Ws/Ws rats is <60% of that in +/+ rats. So we conclude that approximately half of the histamine content of rat brain is derived from mast cells. Next, the effects of ( S )α-fluoromethylhistidine (FMH), a specific inhibitor of HDC, on the histamine contents and HDC activities of various regions of the brain were examined in Ws/Ws rats. In the whole brain of Ws/Ws rats, 51 and 37% of the histamine content of the control group remained 2 and 6 h, respectively, after FMH administration (100 mg/kg of body weight). Therefore, we suggest that there might be other histamine pools including histaminergic neurons in rat brain.  相似文献   

10.
Studies were undertaken to determine the effects of cellular glucoprivation on temperature responses in morphine-addicted and placebo-treated rats and to compare these responses to those observed during naloxone-precipitated morphine withdrawal. Naloxone caused a tail skin temperature (TST) response of 5.7 +/- 0.5 degrees C in morphine-dependent rats. Intraperitoneal administration 2-deoxyglucose (2DG) caused TST responses in placebo-treated and morphine-dependent rats of 4.8 +/- 0.6 and 6.2 +/- 0.5 degrees C, respectively. These data indicate that the activation of the sympathetic nervous system by cellular glucoprivation causes a TST response which is equivalent in magnitude to that induced by precipitating withdrawal with naloxone. This effect of 2DG appears to be mediated by the brain, since icy administration of 2DG caused a TST response, similar to that induced by naloxone treatment of morphine-dependent rats. Collectively, these data suggest that a TST increase is a component of the response of rats to local brain glucoprivation induced by 2DG.  相似文献   

11.
SINGER, LORI K, DAVID A YORK, GEORGE A BRAY. Feeding response to mercaptoacetate in Osborne-Mendel and S5B/PL Rats. The purpose of this experiment was to determine if Osborne-Mendel (OM) rats, which are susceptible to dietary-induced obesity, and S5B/PL (S5B) rats, which are resistant to dietary-induced obesity, differ in their feeding responses to mercaptoacetate (MA), which blocks fatty acid oxidation, or 2-deoxy-D-glucose (2DG), which blocks glucose utilization. 2DG (100 mg/kg or 200 mg/ kg) increased food intake in both strains of rats on a high-fat diet (56% energy from fat). Mercaptoacetate (600 umol/kg) increased food intake in OM but not S5B rats on a high-fat diet. When maintained on a low-fat diet (10% energy from fat), MA (400 umol/kg or 600 umol/kg) stimulated food intake in OM rats, whereas S5B rats increased food intake only after the highest dose of MA (600 umol/kg). MA stimulated carbohydrate and protein intake in OM rats maintained on a macro-nutrient selection diet, whereas S5B rats maintained on this diet did not significantly increase intake of any mac-ronutrient after MA. These results demonstrate that OM and S5B rats have a similar food intake response to 2DG but a dissimilar response to MA. The variable response to MA in these strains may be due to a difference in peripheral or central signaling systems related to fatty acid oxidation or a difference in metabolic environments between the strains, which in turn affects the feeding response to MA. These studies suggest that a difference in control of fatty acid oxidation may account for the difference in susceptibility to obesity when eating a high-fat diet.  相似文献   

12.
Traumatic and stressful events during childhood are associated with the development of eating disorders. We conducted an animal study to test if association stress in childhood affects ingestive behavior later in life by using female rats that have an adjusted estrous cycle. First, electrical impedance of the vagina was conducted to test estrous cycle adjustment. Second, the effects of 6 h per day maternal separation from birth to weaning, which models a psychologically stressful experience in childhood, was used to test feeding behavior during an ovarian cycle in female adult rats with matched estrous cycles. Food and water intake in maternal separated and non-separated rats was measured in each estrous phase. Non-separated rats showed periodical changes, but maternal separated rats showed no significant changes in food and water intake during an estrous cycle. An opposing tendency for food and water intake was seen between maternal separated and non-separated rats. These observations suggest that electrical impedance of the vagina showed the highest value in the estrous phase of rats housed in a reversed light-dark cycle, and maternal separation was found to disturb changes in feeding behavior during the estrous cycle.  相似文献   

13.
目的:探讨下丘脑nesfatin-1与组胺信号通路间的相互作用及对摄食的影响。方法:采用第三脑室置管、药物注射、免疫组化、ELISA等方法,观察氟甲基组氨酸(FMH)、α螺旋促肾上腺皮质激素释放激素(CRH)和促甲状腺激素释放激素(TRH)对Nesfatin-1诱导的抑制摄食的影响,以及Nesfatin-1与组胺信号通路相互影响调控摄食机制。结果:第三脑室注射nesfatin-1可显著减少大鼠摄食量,而第三脑室内预先注射FMH,nesfatin-1抑制摄食效应明显减弱,但FMH本身并不影响大鼠夜间摄食量。第三脑室注射nesfatin-1,可显著增加优降宁诱发的PVN、腹内侧核(VMH)、结节乳头核(TMN)内t-MH的积累;但腹腔注射nesfatin-1没有引起大鼠摄食改变,t-MH蓄积也无显著变化。第三脑室注射α螺旋CRH或抗TRH血清均可显著减弱nesfatin-1的抑食效应,而α螺旋CRH、抗TRH血清本身并不显著影响大鼠摄食量。第三脑室注射nesfatin-1可显著增加下丘脑PVN内CRH和TRH水平,且nesfatin-1可显著增加优降宁诱导的PVN、VMH和TMN内t-MH的表达,而α螺旋CRH或抗TRH血清可显著抑制nesfatin-1诱导的PVN、VMH和TMH内t-MH的蓄积。第三脑室注射组胺可显著增加大鼠下丘脑PVN内nesfatin-1含量,但LH、VMH、TMN以及血浆内nesfatin-1水平无显著改变。免疫组化研究显示,PVN内有nesfatin-1和H1-R免疫反应阳性神经元,且部分神经元共存。结论:Nesfatin-1的抑食效应可能与下丘脑组胺信号通路介导。  相似文献   

14.
Objective: The purpose of the present study was to examine the metabolic effects of a specific histamine H3 receptor antagonist, the cinnamic amide NNC 0038‐0000‐1202 (NNC 38‐1202). Research Methods and Procedures: Effects of NNC 38‐1202 on paraventricular levels of histamine and acute effects on food intake were followed in normal rats, whereas effects on body weight homeostasis and lipid metabolism were studied in a rat model of diet‐induced obesity (DIO). Results: NNC 38‐1202, administered as single oral doses of 15 and 30 mg/kg, significantly (p < 0.01) increased paraventricular histamine by 339 ± 54% and 403 ± 105%, respectively, compared with basal levels. The same doses produced significant (p < 0.01) reductions in food intake. In DIO rats receiving NNC 38‐1202 in a daily dose of 5 mg/kg for 22 days, a decrease in food intake was associated with a significant (p < 0.001) net loss of body weight (?11.0 ± 4.8 grams), compared with rats receiving vehicle, which gained 13.6 ± 3.0 grams. Also, NNC 38‐1202 significantly (p < 0.05) reduced plasma triglycerides by ~42%, in parallel with increases in plasma free fatty acids and β‐hydroxybutyrate levels. Despite reductions in food intake and body weight following administration of NNC 38‐1202, no sign of a decrease in energy expenditure was observed, and whole‐body lipid oxidation was significantly (p < 0.05) increased in the period after dosing. Discussion: The present study suggests that antagonistic targeting of the histamine H3 receptor decreases food intake, body weight, and plasma TG levels and, thus, represents an interesting approach to treatment of obesity and associated hyperlipidemia.  相似文献   

15.
16.
We previously showed that peptides containing leptin sequences 1-33 or 61-90 are taken up by the rat brain. We now report the effects of these peptides on food intake and body weight in mature rats. Peptides were infused intravenously for 4weeks, using Alzet minipumps. Dosages were 20μg/kg/day in experiment I, and 60μg/kg/day in experiment 2. In experiment 1, female rats receiving peptides 1-33 and 61-90 each underwent an approximate doubling of the weight gain of control rats. These peptides also increased food intake in female rats. Peptide 15-32, which has a lesser degree of brain uptake, gave a smaller weight gain. Peptide 83-108, which is not taken up by the brain, had no effect on weight gain or food intake. Similar results were obtained in experiment 2. In male rats, however, none of the peptides caused significant changes in food intake or body weight. This was at least partly due to the fact that all male rats underwent vigorous weight increases. We conclude that peptides 1-33 and 61-90 acted as leptin antagonists, stimulating food intake and body weight increases, at least in female rats. These peptides may lead to clinical applications in conditions such as anorexia and cachexia.  相似文献   

17.
While prolactin (PRL) has been reported to increase food intake by virgin female rats, its effects on food intake by male rats are relatively unexplored. The present studies examined the possibility that PRL has sex-specific effects on food intake by rats. In the first study, intact female and male rats were given subcutaneous injections of saline vehicle or ovine (o) PRL (1.0 mg/kg) twice daily at 08:00 and 20:00 h for 10 days. Food intake, body weight, and water intake were measured daily. Results indicate that oPRL administration increased food intake by an average of 4.5 g per day in female subjects, but did not significantly alter body weight or water intake. Male rats treated with oPRL did not significantly alter their food intake, even after an additional five days of treatment. In the second study, a wide range of oPRL doses (vehicle, 0.02, 0.2, 2.0, and 20.0 mg/kg/day) were tested in gonadectomized female and male rats. The results indicate that female rats responded to increasingly larger doses of oPRL with greater increases in food intake, with a maximum increase of approximately 6. 1 g per day at a dose of 20.0 mg/kg. In contrast, male rats maintained baseline levels of intake across all oPRL doses tested. These data suggest that PRL has sex-specific effects on food intake.  相似文献   

18.
Trazodone was tested for its ability to elevate serum prolactin levels in mature female rats. When the drug was administered acutely to female rats at doses up to 80 mg/kg ip, it induced a clear rise in serum prolactin levels, with a minimum effective dose of 20 mg/kg; blood trazodone levels at these doses were between 1.6–2.4 μg/ml. However, trazodone could not be considered to be a potent stimulator of prolactin secretion, since the injection of haloperidol at 2 mg/kg elevated serum prolactin to values twice those seen in animals receiving the 80 mg/kg dose of trazodone. When trazodone was administered chronically in the diet for two or four weeks, at an average daily dose of 80 mg/kg, serum trazodone levels were found to be 100–200 ng/ml when measured at each stage of the estrous cycle. Serum prolactin levels in trazodone-treated animals, however, did not differ from those in control rats. Moreover, drug-treated animals showed normal proestrus surges in serum prolactin. The results of these studies thus indicate that acutely, at very high doses, trazodone probably can stimulate prolactin secretion modestly in female rats. However, when consumed chronically at 80 mg/kg/day, the drug has no effects on serum prolactin levels. Therefore, if trazodone stimulates prolactin secretion by altering neurotransmission across dopamine and/or serotonin synapses in brain, it is probably not potent in these actions, at least as concerns those dopamine and serotonin neurons that influence the secretion of prolactin.  相似文献   

19.
R76713 is a novel triazole derivative which selectively blocks the cytochrome P450-dependent aromatase. In human placental microsomes, in FSH-stimulated rat and human granulosa cells and in human adipose stromal cells, 50% inhibition of estradiol biosynthesis was obtained at drug concentrations of 2-10 nM. In PMSG-injected female rats, R76713 lowered plasma estradiol levels by 50 and 90% 2 h after single oral doses of 0.005 and 0.05 mg/kg respectively. After 1 mg/kg, estradiol levels were suppressed by 90% for 16 h. In male cynomolgus monkeys, R76713 dose-dependently (0.03-10 micrograms/kg) inhibited peripheral aromatization with an ED50 of 0.13 microgram/kg without altering metabolic clearance rates and conversion ratios. In vitro R76713 had no effect on other P450-dependent steroidogenic enzymes up to 1000 nM at least. In rats, LHRH-, ACTH- and sodium-deprived diet stimulated plasma testosterone, corticosterone and aldosterone levels were not modified 2 h after single oral administrations of R76713 (up to 20 mg/kg). Furthermore, R76713 did not show any in vitro or in vivo estrogenic or antiestrogenic property. R76713 also induced regression of DMBA-induced mammary tumors after daily oral administration of 1 mg/kg b.i.d. In male volunteers (n = 4), a single oral dose of 5 and 10 mg lowered median plasma estradiol levels from 70 pM to the detection limit of the assay (40 pM) 4, 8 and 24 h after intake whereas no changes were detected after placebo administration. In premenopausal women (n = 15), receiving a single oral dose of 20 mg, median plasma estradiol levels decreased from 389 pM (before) to 168, 133 and 147 pM, 4, 8 and 24 h after intake whereas they remained above 420 pM after placebo (n = 7).  相似文献   

20.
Locomotor activity and food and water consumption are potentially indices of post-operative pain in laboratory rodents, but it is important to establish whether these variables are directly affected by opioid analgesics or by halothane anaesthesia in normal rats. The effects of three opioids, buprenorphine, nalbuphine and butorphanol administered alone or following halothane anaesthesia, were studied in groups of normal non-operated adult Wistar rats. All 3 analgesics affected food intake and activity levels, but had little or no effect on water intake. Buprenorphine caused a significant elevation of activity levels and a reduction in food intake at clinical doses (0.01 and 0.05 mg/kg s/c). Nalbuphine (0.5, 1 and 2 mg/kg s/c) caused a reduction in food intake but had a smaller stimulatory effect on locomotion. Butorphanol (0.4 mg/kg s/c) caused a reduction in food intake and elevation in activity. These results suggest that water consumption is likely to be a more reliable variable to use when assessing post-operative pain and the efficacy of analgesics in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号