首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social discounting in economics involves applying a diminishing weight to community-wide benefits or costs into the future. It impacts on public policy decisions involving future positive or negative effects, but there is no consensus on the correct basis for determining the social discount rate. This study presents an evolutionary biological framework for social discounting. How an organism should value future benefits to its local community is governed by the extent to which members of the community in the future are likely to be its kin. Trade-offs between immediate and delayed benefits to an individual or to its community are analysed for a modelled patch-structured iteroparous population with limited dispersal. It is shown that the social discount rate is generally lower than the individual (private) discount rate. The difference in the two rates is most pronounced, in ratio terms, when the dispersal level is low and the hazard rate for patch destruction is much smaller than the individual mortality rate. When decisions involve enforced collective action rather than individuals acting independently, social investment increases but the social discount rate remains the same.  相似文献   

2.
Experimental evolution of dispersal in spatiotemporally variable microcosms   总被引:1,自引:0,他引:1  
The world is an uncertain place. Individuals’ fates vary from place to place and from time to time. Natural selection in unpredictable environments should favour individuals that hedge their bets by dispersing offspring. I confirm this basic prediction using Caenorhabditis elegans in experimental microcosms. My results agree with evolutionary models and correlations found previously between habitat stability and individual dispersal propensity in nature. However, I also find that environmental variation that triggers conditional dispersal behaviour may not impose selection on baseline dispersal rates. These findings imply that an increased rate of disturbance in natural systems has the potential to cause an evolutionary response in the life history of impacted organisms.  相似文献   

3.
Although juvenile dispersal is an important life history component, it remains one of the less understood ecological processes regulating the dynamics of animal populations. Lack of information about patterns of dispersal hampers the estimation of the actual status and demographic trajectory of populations, and can preclude the development of sound conservation strategies. The Eagle Owl Bubo bubo is an endangered bird species in the European Alps. Many breeding sites have been abandoned in the twentieth century, although some recovery has been reported lately. Moreover, the occupancy of traditional breeding sites across years in well-monitored Alpine populations varies a lot, this despite a relatively high breeding success at the population level. This raises concern about the long-term persistence of Alpine populations. Using conventional and satellite radiotracking, we investigated the spatio-temporal dispersal of 41 juvenile Eagle Owls originating from a population in the southwestern Swiss Alps. Our main goal was to determine dispersal distances, places and times of post-dispersal settlement. Juveniles left their parents between mid-August and mid-November. They covered, on average, 12.7 km per night (linear distance between two consecutive day roosts), often crossing high mountain ranges (up to 3,000 m altitude). The mean total distance covered by an individual during dispersal was 102 km (sum of night movements), with a maximum of 230 km. Settlement places were, on average, 46 km distant from the birth place. Our study establishes long-distance dispersal in juvenile Eagle Owls, even in a complex topography, suggesting the existence of a wide-scale metapopulation system across the northwestern Alps. This metapopulation dimension should be accounted for in conservation plans.  相似文献   

4.
Trees outside woodlands facilitate dispersal of woodland invertebrates and may buffer against fragmentation impacts. European ash (Fraxinus excelsior) is common outside woodlands but is threatened by the fungal disease ash dieback (Hymenoscyphus fraxineus). Loss of ash trees to disease or pre-emptive felling could represent a substantial loss in connectivity. We assess the impact of tree disease and the pre-emptive felling of non-woodland ash trees on dispersal and gene flow of woodland invertebrates. We use a stochastic individual-based modelling platform, RangeShifter, to explore impacts of tree loss on the spatial dynamics of ‘virtual’ ash-reliant insects, species which depend on ash to complete their life cycle, with varying dispersal abilities and population densities. We simulate the loss of individual trees in and out of woodlands using current tree cover data from 24 real-world landscapes and estimate functional and genetic connectivity in relation to species-specific habitat-dependent movement costs and the likelihood to move in a straight line. Removal of 10% of ash trees resulted in an increase in dispersal mortality of up to 14.6%, and an increase in isolated woodlands (receiving no immigrants) of up to 2.9%. In some landscapes this resulted in increased isolation by distance (IBD - correlation between genetic and geographic distance). Carrying capacity impacted the proportion of isolated patches and IBD. Species experiencing high dispersal cost were less successful at dispersing under high tree loss, and this decreased geneflow. The consequences of tree loss for woodland connectivity are influenced by the species dispersal traits, but the consequences for gene flow depends on the arrangement of trees within the landscape. Therefore, the focal landscape must be represented explicitly when predicting the impacts of tree diseases on connectivity for a given species.  相似文献   

5.
Liu J  Zhou S 《PloS one》2011,6(8):e24128
The neutral assumption that individuals of either the same or different species share exactly the same birth, death, migration, and speciation probabilities is fundamental yet controversial to the neutral theory. Several theoretical studies have demonstrated that a slight difference in species per capita birth or death rates can have a profound consequence on species coexistence and community structure. Whether asymmetry in migration, a vital demographic parameter in the neutral model, plays an important role in community assembly still remains unknown. In this paper, we relaxed the ecological equivalence assumption of the neutral model by introducing differences into species regional dispersal ability. We investigated the effect of asymmetric dispersal on the neutral local community structure. We found that per capita asymmetric dispersal among species could reduce species richness of the local community and result in deviations of species abundance distributions from those predicted by the neutral model. But the effect was moderate compared with that of asymmetries in birth or death rates, unless very large asymmetries in dispersal were assumed. A large difference in species dispersal ability, if there is, can overwhelm the role of random drift and make local community dynamics deterministic. In this case, species with higher regional dispersal abilities tended to dominate in the local community. However, the species abundance distribution of the local community under asymmetric dispersal could be well fitted by the neutral model, but the neutral model generally underestimated the fundamental biodiversity number but overestimated the migration rate in such communities.  相似文献   

6.
Achieving sufficient connectivity between populations is essential for persistence, but costs of dispersal may select against individual traits or behaviours that, if present, would improve connectivity. Existing dispersal models tend to ignore the multitude of risks to individuals: while many assess the effect of mortality costs, there is also a risk of failing to find new habitat, especially when the entire inhabitable area remains both small and fragmented. There are few known rules governing whether individuals evolve to disperse more, or less, than what is ideal for population connectivity and persistence. Here we aim to fill this gap, while also noting that evolution might not only produce suboptimal dispersal behaviour: it also influences individual heterogeneity in dispersal. Intuitively, we might expect heterogeneity to improve connectivity, as some individuals will travel far. However, we show that this is only true if dispersal distances on average are quite short; heterogeneity can also lead to reduced connectivity because it can reduce the proportion of the most profitable (‘safest’) intermediate dispersal distances. In general, our results show that conditions typically associated with conservation concerns (small and fragmented habitats inhabited by a species with a low birth rate) are also ones that are most likely to lead to suboptimal dispersal traits. This prompts the question of assisted dispersal in cases of urgent conservation concern.  相似文献   

7.
Deborah Durham 《Ethnos》2013,78(2):155-179
This article examines funerals in a Herero community in Botswana as a discourse on the fundamental sentiments that orient people to one another and that connect them through effecting mutuality. I argue that the Herero community, in the face of ongoing dispersal, is more concerned with sustaining sociality than with reconstituting particular forms or relationships. At deaths, Herero highlight basic social orientations through sentimental assertions of love, and desire, in the context of evidence of hostility and jealousy. Because these assertions are made, and sentiments motivated and acted, they also provide the medium through which changes in social forms take place.  相似文献   

8.
Cercozoa and Oomycota contain a huge biodiversity and important pathogens of forest trees and other vegetation. We analyzed air dispersal of these protistan phyla with an air sampler near-ground (~2 m) and in tree crowns (~25 m) of three tree species (oak, linden and ash) in a temperate floodplain forest in March (before leafing) and May (after leaf unfolding) 2019 with a cultivation-independent high-throughput metabarcoding approach. We found a high diversity of Cercozoa and Oomycota in air samples with 122 and 81 OTUs, respectively. Especially oomycetes showed a significant difference in community composition between both sampling dates. Differences in community composition between air samples in tree canopies and close to the ground were however negligible, and also tree species identity did not affect communities in air samples, indicating that the distribution of protistan propagules through the air was not spatially restricted in the forest ecosystem. OTUs of plant pathogens, whose host species did not occur in the forest, demonstrate dispersal of propagules from outside the forest biome. Overall, our results lead to a better understanding of the stochastic processes of air dispersal of protists and protistan pathogens, a prerequisite to understand the mechanisms of their community assembly in forest ecosystems.  相似文献   

9.
Seed dispersal by animals is a complex phenomenon, characterized by multiple mechanisms and variable outcomes. Most researchers approach this complexity by analysing context‐dependency in seed dispersal and investigating extrinsic factors that might influence interactions between plants and seed dispersers. Intrinsic traits of seed dispersers provide an alternative way of making sense of the enormous variation in seed fates. I review causes of intraspecific variability in frugivorous and granivorous animals, discuss their effects on seed dispersal, and outline likely consequences for plant populations and communities. Sources of individual variation in seed‐dispersing animals include sexual dimorphism, changes associated with growth and ageing, individual specialization, and animal personalities. Sexual dimorphism of seed‐dispersing animals influences seed fate through diverse mechanisms that range from effects caused by sex‐specific differences in body size, to influences of male versus female cognitive functions. These differences affect the type of seed treatment (e.g. dispersal versus predation), the number of dispersed seeds, distance of seed dispersal, and likelihood that seeds are left in favourable sites for seeds or seedlings. The best‐documented consequences of individual differences associated with growth and ageing involve quantity of dispersed seeds and the quality of seed treatment in the mouth and gut. Individual specialization on different resources affects the number of dispersed plant species, and therefore the connectivity and architecture of seed‐dispersal networks. Animal personalities might play an important role in shaping interactions between plants and dispersers of their seeds, yet their potential in this regard remains overlooked. In general, intraspecific variation in seed‐dispersing animals often influences plants through effects of these individual differences on the movement ecology of the dispersers. Two conditions are necessary for individual variation to exert a strong influence on seed dispersal. First, the individual differences in traits should translate into differences in crucial characteristics of seed dispersal. Second, individual variation is more likely to be important when the proportions of particular types of individuals fluctuate strongly in a population or vary across space; when proportions are static, it is less likely that intraspecific differences will be responsible for changes in the dynamics and outcomes of plant–animal interactions. In conclusion, focusing on variation among foraging animals rather than on species averages might bring new, mechanistic insights to the phenomenon of seed dispersal. While this shift in perspective is unlikely to replace the traditional approach (based on the assumption that all important variation occurs among species), it provides a complementary alternative to decipher the enormous variation observed in animal‐mediated seed dispersal.  相似文献   

10.
Goudet J  Perrin N  Waser P 《Molecular ecology》2002,11(6):1103-1114
Understanding why dispersal is sex-biased in many taxa is still a major concern in evolutionary ecology. Dispersal tends to be male-biased in mammals and female-biased in birds, but counter-examples exist and little is known about sex bias in other taxa. Obtaining accurate measures of dispersal in the field remains a problem. Here we describe and compare several methods for detecting sex-biased dispersal using bi-parentally inherited, codominant genetic markers. If gene flow is restricted among populations, then the genotype of an individual tells something about its origin. Provided that dispersal occurs at the juvenile stage and that sampling is carried out on adults, genotypes sampled from the dispersing sex should on average be less likely (compared to genotypes from the philopatric sex) in the population in which they were sampled. The dispersing sex should be less genetically structured and should present a larger heterozygote deficit. In this study we use computer simulations and a permutation test on four statistics to investigate the conditions under which sex-biased dispersal can be detected. Two tests emerge as fairly powerful. We present results concerning the optimal sampling strategy (varying number of samples, individuals, loci per individual and level of polymorphism) under different amounts of dispersal for each sex. These tests for biases in dispersal are also appropriate for any attribute (e.g. size, colour, status) suspected to influence the probability of dispersal. A windows program carrying out these tests can be freely downloaded from http://www.unil.ch/izea/softwares/fstat.html  相似文献   

11.
Following the treatment of cattle with veterinary parasiticides and insecticides, residues are excreted into the dung in concentrations that may be toxic to functionally important dung-colonizing insects. In the dung, these residues cause a range of well-studied lethal and sub-lethal effects, the magnitudes of which vary with the compound used, mode of administration and concentration, and the insect species in question. Particular concern has been associated with the use of macrocyclic lactones in this context. Loss of insect colonizers may delay pat decomposition, but field studies report contrasting results that reflect confounding factors such as weather conditions, pat moisture content, pat location, time of year and dung insect species phenologies. The question of fundamental concern is whether the impacts seen in experimental or laboratory studies are likely to have a functional impact on insect populations, community interactions and the economically important process of dung decomposition. Recent studies which have attempted to address these wider, landscape-level impacts in temperate ecosystems are reviewed here. These show that the extent to which chemical residues may have any sustained ecological impact will depend on both a range of farm management factors, such as the temporal and spatial patterns of chemical use, the number of animals treated and the choice of active ingredient, and a range of insect-related factors, such as abundance, population dynamics and dispersal rates. However, they also demonstrate that considerable uncertainty remains about the likely extent of such effects and that current data are insufficient to support firm conclusions regarding sustained pasture-level effects. More large-scale, longterm field experiments are required, particularly in relation to insect dispersal and functional interactions within the dung insect community.  相似文献   

12.
岛屿生物地理学理论的核心过程是岛屿物种的周转, 包括迁入与灭绝。本研究旨在探讨扩散能力差异对岛屿繁殖鸟类群落动态的影响。2007年4月至2013年6月, 采用样线法调查了千岛湖36个陆桥岛屿的繁殖鸟类, 依据扩散能力强弱将其划分为两类, 结合陆桥岛屿参数, 并运用逻辑斯蒂回归模型和最大似然法, 来研究鸟类扩散能力的不同对其周转率的影响。结果表明, 千岛湖繁殖鸟类扩散能力强的物种具有较高周转率且受岛屿参数约束较小, 而扩散能力弱的物种周转率较低且对岛屿参数变化更敏感。因此, 千岛湖陆桥岛屿繁殖鸟类的扩散能力显著影响其群落动态。  相似文献   

13.
Individual dispersal among colonies of Little Egrets Egretta garzetta   总被引:1,自引:0,他引:1  
Colonial waterbirds are unusual in that competition for nest-sites or mates may occur at a scale of a few metres, whereas thousands of birds may overlap in their foraging range at a larger scale. Dispersal has been evaluated for only a few such species, and its adaptive significance remains unclear. We studied Little Egret dispersal among all the colonies within the Camargue, southern France. The overall probability of dispersal between successive years was 0.45. The probability of dispersal was unaffected by a bird's age, or by any density-dependent effect of colony size. Juveniles dispersed at distances that would be expected if colony selection were random, while adults tended to remain within 10 km of their previous colony. We found no obvious environmental 'trigger' for an individual to disperse. Although our evidence is inconclusive, the short dispersal distances of adults are not consistent with foraging conditions as the primary trigger for dispersal. Little Egrets generally forage within 8 km of their colony, so birds dispersing less than 10 km would gain little advantage in response to unfavourable foraging conditions. Our data, with 75% of dispersing birds coming from decreasing colonies and 72% joining increasing colonies, suggest that individual dispersal depended on colony dynamics as a whole, i.e. (1) a social component of dispersal at the individual level, or (2) a simultaneous colony response to unfavourable environmental conditions or (3) both. Further investigation at a higher social level may be necessary to understand dispersal of this colonial nesting species.  相似文献   

14.
We find the evolutionarily stable dispersal behaviour of a population that inhabits a heterogeneous environment where patches differ in safety (the probability that a juvenile individual survives until reproduction) and productivity (the total competitive weight of offspring produced by the local individual), assuming that these characteristics do not change over time. The body condition of clonally produced offspring varies within and between families. Offspring compete for patches in a weighted lottery, and dispersal is driven by kin competition. Survival during dispersal may depend on body condition, and competitive ability increases with increasing body condition. The evolutionarily stable strategy predicts that families abandon patches which are too unsafe or do not produce enough successful dispersers. From families that invest in retaining their natal patches, individuals stay in the patch that are less suitable for dispersal whereas the better dispersers disperse. However, this clear within-family pattern is often not reflected in the population-wide body condition distribution of dispersers or non-dispersers. This may be an explanation why empirical data do not show any general relationship between body condition and dispersal. When all individuals are equally good dispersers, then there exist equivalence classes defined by the competitive weight that remains in a patch. An equivalence class consists of infinitely many dispersal strategies that are selectively neutral. This provides an explanation why very diverse patterns found in body condition dependent dispersal data can all be equally evolutionarily stable.  相似文献   

15.
Different species have different dispersal capabilities and in the field, species interact with each other within dynamic, heterogeneous and complex landscapes. While plants and certain herbivore species may disperse considerable distances by means of seed dispersal or flight, other herbivores (e.g. root‐feeding nematodes or non‐winged insect herbivores) are more limited in their dispersal capacities. This difference in dispersal capabilities results in mosaics of plant–herbivore interactions that shift over time and space leading to spatio‐temporal variation in both the presence and absence of the species and their interactions. We developed an individual based simulation model in which we examined how multi‐species interactions are affected by their mobility within structurally complex landscapes. The main objective was to address the consequences for the arms race between plant defence and herbivore resistance to changes in fundamental landscape and community attributes. We demonstrate that feedbacks between landscape structure, community structure and the specific dispersal rate of the species involved affect the evolutionary dynamics between plants and herbivore antagonists. While three‐species interactions result in increased plant defence and herbivore resistance, effects of dispersal have diverse effects depending on the prevailing landscape structure.  相似文献   

16.
Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire‐coping strategies among common dry forests plants: resisters (low fire‐induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post‐fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post‐fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited.  相似文献   

17.
This article examines how Fiji Islanders of diverse ethnic backgrounds living in Japan's Kantō area reflect on and constitute community life in the diaspora. While they occasionally refer to the ‘community’ and speak about its social value, get-togethers of significant numbers occur infrequently. Ultimately, a Fijian-centred community is virtually absent in the everyday lives of Japan-based Fiji Islanders. Based on twelve months of ethnographic fieldwork in the Tokyo Metropolis and its neighbouring prefectures, this contribution suggests that for Fiji Islanders in Kantō, talking about ‘community’ serves two particular purposes: on the one hand community discourses create an emotional bond, both among the migrants and between the migrants and their place of origin. At the same time, discourses on the relevance of the community without undergoing efforts to maintain it, serve as strategies of navigating self and belonging in a critical and reflexive way. As migrants’ social lives are complex and shaped by numerous economic, spatial, and individual disjunctures, Kantō Fiji Islanders contextually configure and extend their social relations with regard to their socio-cultural heritage, their place of residence in Japan, their gaikokujin (foreigner) status, and their life-work cycles.  相似文献   

18.
Primates are among the most important seed dispersers in the habitats they occupy. Understanding the extent of, and gaps in, our knowledge of seed dispersal by Asian primates is essential, because many of these primates are extremely vulnerable to anthropogenic disturbance. In this review, I show how initial studies focused on the role of individual species in seed dispersal have expanded more recently to consider their role in the wider frugivore community. There are five functional groups of primate seed dispersers in Asia; most of our information comes from the (usually) highly frugivorous macaques and gibbons, while our understanding of the roles played by orangutans and, especially, colobines and lorises remains rudimentary. Preliminary community-wide studies suggest a pivotal role for gibbons and macaques in frugivore communities, with higher dispersal overlap with other mammals than with birds. The gaps in our knowledge are plentiful, however, including understanding fruit selection in detail, determining how seed dispersal roles might change across different habitats, evaluating the balance between mutualisms and antagonisms in orangutans and macaques, describing postdispersal processes, and documenting how habitats are impacted by changes in primate abundance and behavior.  相似文献   

19.
Foliar fungal endophytes represent a diverse and species‐rich plant microbiome. Their biogeography provides essential clues to their cryptic relationship with hosts and the environment in which they disperse. We present species composition, diversity, and dispersal patterns of endophytic fungi associated with needles of Pinus taeda trees across regional scales in the absence of strong environmental gradients as well as within individual trees. An empirical designation of rare and abundant taxa enlightens us on the structure of endophyte communities. We report multiple distance‐decay patterns consistent with effects of dispersal limitation, largely driven by community changes in rare taxa, those taxonomic units that made up less than 0.31% of reads per sample on average. Distance‐decay rates and community structure also depended on specific classes of fungi and were predominantly influenced by rare members of Dothideomycetes. Communities separated by urban areas also revealed stronger effects of distance on community similarity, confirming that host density and diversity plays an important role in symbiont biogeography, which may ultimately lead to a mosaic of functional diversity as well as rare species diversity across landscapes.  相似文献   

20.
  1. Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large‐seeded trees depends upon large‐bodied vertebrates.
  2. We report on a long‐running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence.
  3. Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large‐bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large‐bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers.
  4. Synthesis: The presumption that forests depleted of large‐bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号