首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

2.
Mutations in human presenilin (PS) genes cause aggressive forms of familial Alzheimer's disease. Presenilins are polytopic proteins that harbour the catalytic site of the gamma-secretase complex and cleave many type I transmembrane proteins including beta-amyloid precursor protein (APP), Notch and syndecan 3. Contradictory results have been published concerning whether PS mutations cause 'abnormal' gain or (partial) loss of function of gamma-secretase. To avoid the possibility that wild-type PS confounds the interpretation of the results, we used presenilin-deficient cells to analyse the effects of different clinical mutations on APP, Notch, syndecan 3 and N-cadherin substrate processing, and on gamma-secretase complex formation. A loss in APP and Notch substrate processing at epsilon and S3 cleavage sites was observed with all presenilin mutants, whereas APP processing at the gamma site was affected in variable ways. PS1-Delta9 and PS1-L166P mutations caused a reduction in beta-amyloid peptide Abeta40 production whereas PS1-G384A mutant significantly increased Abeta42. Interestingly PS2, a close homologue of PS1, appeared to be a less efficient producer of Abeta than PS1. Finally, subtle differences in gamma-secretase complex assembly were observed. Overall, our results indicate that the different mutations in PS affect gamma-secretase structure or function in multiple ways.  相似文献   

3.
Presenilin-1 (PS1) facilitates gamma-secretase cleavage of the beta-amyloid precursor protein and the intramembraneous cleavage of Notch1. Although Alzheimer's disease-associated mutations in the homologous presenilin (PS2) gene elevate amyloid beta-peptide (Abeta42) production like PS1 mutations, here we demonstrate that a gene ablation of PS2 (unlike that of PS1) in mice does not result in a severe phenotype resembling that of Notch-ablated animals. To investigate the amyloidogenic function of PS2 more directly, we mutagenized a conserved aspartate at position 366 to alanine, because the corresponding residue of PS1 is known to be required for its amyloidogenic function. Cells expressing the PS2 D366A mutation exhibit significant deficits in proteolytic processing of beta-amyloid precursor protein indicating a defect in gamma-secretase activity. The reduced gamma-secretase activity results in the almost complete inhibition of Abeta and p3 production in cells stably expressing PS2 D366A, whereas cells overexpressing the wild-type PS2 cDNA produce robust levels of Abeta and p3. Using highly sensitive in vivo assays, we demonstrate that the PS2 D366A mutation not only blocks gamma-secretase activity but also inactivates PS2 activity in Notch signaling by inhibiting the proteolytic release of the cytoplasmic Notch1 domain. These data suggest that PS2 is functionally involved in Abeta production and Notch signaling by facilitating similar proteolytic cleavages.  相似文献   

4.
Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs. Of particular interest is the PS1-DeltaExon9 mutation, which provokes a pathogenic increase in the Abeta42/Abeta40 ratio and dramatically reduces the cellular response to the Abeta42-lowering NSAID sulindac sulfide. This FAD PS1 mutant is unusual as a splice-site mutation results in deletion of amino acids Thr(291)-Ser(319) including the endoproteolytic cleavage site of PS1, and an additional amino acid exchange (S290C) at the exon 8/10 splice junction. By genetic dissection of the PS1-DeltaExon9 mutation, we now demonstrate that a synergistic effect of the S290C mutation and the lack of endoproteolytic cleavage is sufficient to elevate the Abeta42/Abeta40 ratio and that the attenuated response to sulindac sulfide results partially from the deficiency in endoproteolysis. Importantly, a wider screen revealed that a diminished response to Abeta42-lowering NSAIDs is common among aggressive FAD PS1 mutations. Surprisingly, these mutations were also partially unresponsive to gamma-secretase inhibitors of different structural classes. This was confirmed in a mouse model with transgenic expression of the PS1-L166P mutation, in which the potent gamma-secretase inhibitor LY-411575 failed to reduce brain levels of soluble Abeta42. In summary, these findings highlight the importance of genetic background in drug discovery efforts aimed at gamma-secretase, suggesting that certain AD mouse models harboring aggressive PS mutations may not be informative in assessing in vivo effects of gamma-secretase modulators and inhibitors.  相似文献   

5.
Gamma-secretase mediates the final proteolytic cleavage, which liberates amyloid beta-peptide (Abeta), the major component of senile plaques in the brains of Alzheimer disease patients. Therefore, gamma-secretase is a prime target for Abeta-lowering therapeutic strategies. gamma-Secretase is a protein complex composed of four different subunits, presenilin (PS), APH-1, nicastrin, and PEN-2, which are most likely present in a 1:1:1:1 stoichiometry. PS harbors the catalytically active site, which is critically required for the aspartyl protease activity of gamma-secretase. Moreover, numerous familial Alzheimer disease-associated mutations within the PSs increase the production of the aggregation-prone and neurotoxic 42-amino acid Abeta. Nicastrin may serve as a substrate receptor, although this has recently been challenged. PEN-2 is required to stabilize PS within the gamma-secretase complex. No particular function has so far been assigned to APH-1. The four components are sufficient and required for gamma-secretase activity. At least six different gamma-secretase complexes exist that are composed of different variants of PS and APH-1. All gamma-secretase complexes can exert pathological Abeta production. Assembly of the gamma-secretase complex occurs within the endoplasmic reticulum, and only fully assembled and functional gamma-secretase complexes are transported to the plasma membrane. Structural analysis by electron microscopy and chemical cross-linking reveals a water-containing cavity, which allows intramembrane proteolysis. Specific and highly sensitive gamma-secretase inhibitors have been developed; however, they interfere with the physiological function of gamma-secretase in Notch signaling and thus cause rather significant side effects in human trials. Modulators of gamma-secretase, which selectively affect the production of the pathological 42-amino acid Abeta, do not inhibit Notch signaling.  相似文献   

6.
Mutations in presenilin (PS) genes cause early-onset familial Alzheimer's disease by increasing production of the amyloidogenic form of amyloid beta peptides ending at residue 42 (Abeta42). PS is an evolutionarily conserved multipass transmembrane protein, and all known PS proteins contain a proline-alanine-leucine-proline (PALP) motif starting at proline (P) 414 (amino acid numbering based on human PS2) at the C terminus. Furthermore, missense mutations that replace the first proline of PALP with leucine (P414L) lead to a loss-of-function of PS in Drosophila melanogaster and Caenorhabditis elegans. To elucidate the roles of the PALP motif in PS structure and function, we analyzed neuro2a as well as PS1/2 null fibroblast cell lines transfected with human PS harboring mutations at the PALP motif. P414L mutation in PS2 (and its equivalent in PS1) abrogated stabilization, high molecular weight complex formation, and entry to Golgi/trans-Golgi network of PS proteins, resulting in failure of Abeta42 overproduction on familial Alzheimer's disease mutant basis as well as of site-3 cleavage of Notch. These data suggest that the first proline of the PALP motif plays a crucial role in the stabilization and formation of the high molecular weight complex of PS, the latter being the active form with intramembrane proteolytic activities.  相似文献   

7.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

8.
Alzheimer disease amyloid beta-peptide (Abeta) is generated via proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretase. Gamma-secretase can be blocked by selective inhibitors but can also be modulated by a subset of non-steroidal anti-inflammatory drugs, including sulindac sulfide. These drugs selectively reduce the generation of the aggregation-prone 42-amino acid Abeta(42) and concomitantly increase the levels of the rather benign Abeta(38). Here we show that Abeta(42) and Abeta(38) generation occur independently from each other. The amount of Abeta(42) produced by cells expressing 10 different familial Alzheimer disease (FAD)-associated mutations in presenilin (PS) 1, the catalytic subunit of gamma-secretase, appeared to correlate with the respective age of onset in patients. However, Abeta(38) levels did not show a negative correlation with the age of onset. Modulation of gamma-secretase activity by sulindac sulfide reduced Abeta(42) in the case of wild type PS1 and two FAD-associated PS1 mutations (M146L and A285V). The remaining eight PS1 FAD mutants showed either no reduction of Abeta(42) or only rather subtle effects. Strikingly, even the mutations that showed no effect on Abeta(42) levels allowed a robust increase of Abeta(38) upon treatment with sulindac sulfide. Similar observations were made for fenofibrate, a compound known to increase Abeta(42) and to decrease Abeta(38). For mutants that predominantly produce Abeta(42), the ability of fenofibrate to further increase Abeta(42) levels became diminished, whereas Abeta(38) levels were altered to varying extents for all mutants analyzed. Thus, we conclude that Abeta(38) and Abeta(42) production do not depend on each other. Using an independent non-steroidal anti-inflammatory drug derivative, we obtained similar results for PS1 as well as for PS2. These in vitro results were confirmed by in vivo experiments in transgenic mice expressing the PS2 N141I FAD mutant. Our findings therefore have strong implications on the selection of transgenic mouse models used for screening of the Abeta(42)-lowering capacity of gamma-secretase modulators. Furthermore, human patients with certain PS mutations may not respond to gamma-secretase modulators.  相似文献   

9.
Gamma-secretase is a member of an unusual class of proteases with intramembrane catalytic sites. This enzyme cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Biochemical and genetic studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin (PS) composed of its N- and C-terminal fragments (PS-NTF/CTF), a mature glycosylated form of nicastrin (NCT), Aph-1, and Pen-2. Recent data from studies in Drosophila, mammalian, and yeast cells suggest that PS, NCT, Aph-1, and Pen-2 are necessary and sufficient to reconstitute gamma-secretase activity. However, many unresolved issues, in particular the possibility of other structural or regulatory components, would be resolved by actually purifying the enzyme. Here, we report a detailed, multistep purification procedure for active gamma-secretase and an initial characterization of the purified protease. Extensive mass spectrometry of the purified proteins strongly suggests that PS-NTF/CTF, mNCT, Aph-1, and Pen-2 are the components of active gamma-secretase. Using the purified gamma-secretase, we describe factors that modulate the production of specific Abeta species: (1) phosphatidylcholine and sphingomyelin dramatically improve activity without changing cleavage specificity within an APP substrate; (2) increasing CHAPSO concentrations from 0.1 to 0.25% yields a approximately 100% increase in Abeta42 production; (3) exposure of an APP-based recombinant substrate to 0.5% SDS modulates cleavage specificity from a disease-mimicking pattern (high Abeta42/43) to a physiological pattern (high Abeta40); and (4) sulindac sulfide directly and preferentially decreases Abeta42 cleavage within the purified complex. Taken together, our results define a procedure for purifying active gamma-secretase and suggest that the lipid-mediated conformation of both enzyme and substrate regulate the production of the potentially neurotoxic Abeta42 and Abeta43 peptides.  相似文献   

10.
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.  相似文献   

11.
12.
13.
14.
Presenilin 1 (PS1) plays an essential role in intramembranous "gamma-secretase" processing of several type I membrane proteins, including the beta-amyloid precursor proteins (APP) and Notch1. In this report, we examine the activity of two familial Alzheimer's disease-linked PS1 variants on the production of secreted Abeta peptides and the effects of L-685,458, a potent gamma-secretase inhibitor, on inhibition of Abeta peptides from cells expressing these PS1 variants. We now report that PS1 variants enhance the production and secretion of both Abeta1-42 and Abeta1-40 peptides. More surprisingly, whereas the IC(50) for inhibition of Abeta1-40 peptide production from cells expressing wild-type PS1 is approximately 1.5 microm, cells expressing the PS1deltaE9 mutant PS1 exhibit an IC(50) of approximately 4 microm. Immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry reveal that the levels of Abeta1-43 peptides are elevated in medium of PS1deltaE9 cells treated with higher concentrations of inhibitor. The differential effects of wild-type and mutant PS1 on gamma-secretase production of Abeta peptides and the disparity in sensitivity of these peptides to a potent gamma-secretase suggest that PS may be necessary, but not sufficient, to catalyze hydrolysis at the scissile bonds that generate the termini of Abeta1-40 and Abeta1-42 peptides.  相似文献   

15.
Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.  相似文献   

16.
The gamma-secretase complex is required for intramembrane cleavage of several integral membrane proteins, including the Notch receptor, where it generates an active signaling fragment. Four putative gamma-secretase components have been identified-presenilin (Psn), nicastrin (Nct), Aph-1, and Pen-2. Here, we use a stepwise coexpression approach to investigate the role of each new component in gamma-secretase assembly and activation. Coexpression of all four proteins leads to high level accumulation of mature Psn and increased proteolysis of Notch. Aph-1 and Nct may form a subcomplex that stabilizes the Psn holoprotein at an early step in gamma-secretase assembly. Subcomplex levels of Aph-1 are down-regulated by stepwise addition of Psn, suggesting that Aph-1 might not enter the mature complex. In contrast, Pen-2 accumulates proportionally with Psn, and is associated with Psn endoproteolysis during gamma-secretase assembly. These results demonstrate that Aph-1 and Pen-2 are essential cofactors for Psn, but that they play different roles in gamma-secretase assembly and activation.  相似文献   

17.
A major component of the amyloid plaque core in Alzheimer's disease (AD) is the 40-42-residue amyloid beta peptide (Abeta). Mutations linked to AD such as those in presenilins 1 (PS1) and 2 (PS2) invariably increase the longer Abeta42 species that forms neurotoxic oligomers. It is believed that PS1/2 constitute the catalytic subunit of the gamma-secretase responsible for the final step in Abeta biogenesis. Recent genetic studies have identified a number of additional genes encoding APH1a, APH1b, PEN2, and Nicastrin proteins, which are part of the gamma-secretase complex with PS1. Further, knockout studies using RNAi showed that these components are essential for gamma-secretase activity. However, the nature of gamma-secretase and how the aforementioned proteins regulate its activity are still incompletely understood. Here we present evidence that unlike PS1, overexpression of these proteins can increase the levels of Abeta, suggesting that these proteins are limiting for gamma-secretase activity. In addition, our studies also suggest that the presenilin partners regulate the relative levels of Abeta40 and Abeta42.  相似文献   

18.
Intramembranous cleavage of the beta-amyloid precursor protein by gamma-secretase is the final processing event generating amyloid-beta peptides, which are thought to be causative agents for Alzheimer's disease. Missense mutations in the presenilin genes co-segregate with early-onset Alzheimer's disease, and, recently, a close biochemical linkage between presenilins and the identity of gamma-secretase has been established. Here we describe for the first time that certain potent gamma-secretase inhibitors are able to interfere with the endoproteolytic processing of presenilin 1 (PS1). In addition, we identified a novel gamma-secretase inhibitor, [1S-benzyl-4R-[1-(5-cyclohexyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-3(R,S)-ylcarbamoyl)-S-ethylcarbamoyl]-2R-hydroxy-5-phenyl-pentyl]-carbamic acid tert-butyl ester (CBAP), which not only physically interacts with PS1, but upon chronic treatment produces a "pharmacological knock-down" of PS1 fragments. This indicates that the observed accumulation of full-length PS1 is caused by a direct inhibition of its endoproteolysis. The subsequent use of CBAP as a biological tool to increase full-length PS1 levels in the absence of exogenous PS1 expression has provided evidence that wild-type PS1 endoproteolysis is not required either for PS1/gamma-secretase complex assembly or trafficking. Furthermore, in cell-based systems CBAP does not completely recapitulate PS1 loss-of-function phenotypes. Even though the beta-amyloid precursor protein cleavage and the S3 cleavage of the Notch receptor are inhibited by CBAP, an impairment of Trk receptor maturation was not observed.  相似文献   

19.
Following ectodomain shedding, Notch-1 undergoes presenilin (PS)-dependent constitutive intramembranous endoproteolysis at site-3. This cleavage is similar to the PS-dependent gamma-secretase cleavage of the beta-amyloid precursor protein (betaAPP). However, topological differences in cleavage resulting in amyloid beta-peptide (Abeta) or the Notch-1 intracellular domain (NICD) indicated independent mechanisms of proteolytic cleavage. We now demonstrate the secretion of an N-terminal Notch-1 Abeta-like fragment (Nbeta). Analysis of Nbeta by MALDI-TOF MS revealed that Nbeta is cleaved at a novel site (site-4, S4) near the middle of the transmembrane domain. Like the corresponding cleavage of betaAPP at position 40 and 42 of the Abeta domain, S4 cleavage is PS dependent. The precision of this cleavage is affected by familial Alzheimer's disease-associated PS1 mutations similar to the pathological endoproteolysis of betaAPP. Considering these similarities between intramembranous processing of Notch and betaAPP, we conclude that these proteins are cleaved by a common mechanism utilizing the same protease, i.e. PS/gamma-secretase.  相似文献   

20.
The presenilin 1 (PS1) and presenilin 2 (PS2) proteins are necessary for proteolytic cleavage of the amyloid precursor protein (APP) within its transmembrane domain. One of these cleavage events (termed gamma-secretase) generates the C-terminal end of the Abeta-peptide by proteolysis near residue 710 or 712 of APP(770). Another event (termed gamma-like or epsilon-secretase cleavage) cleaves near residue 721 at approximately 2-5 residues inside the cytoplasmic membrane boundary to generate a series of stable, C-terminal APP fragments. This latter cleavage is analogous to S3-cleavage of Notch. We report here that specific mutations in the N terminus, loop, or C terminus of PS1 all increase the production of Abeta(42) but cause inhibition of both epsilon-secretase cleavage of APP and S3-cleavage of Notch. These data support the hypothesis that epsilon-cleavage of APP and S3-cleavage of Notch are similar events. They also argue that, although both the gamma-site and the epsilon-site cleavage of APP are presenilin-dependent, they are likely to be independent catalytic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号