首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic variance-covariance matrix, G, is determined in part by functional architecture, the pathways by which variation in genotype influences phenotype. I develop a simple architectural model for G for two traits under directional selection constrained by their dependence on a common limiting resource. I assume that genetic variance is maintained by mutation-selection balance. The relative numbers of loci that play a role in acquiring versus allocating a limiting resource play a crucial role in determining genetic covariance. If many loci are involved in acquiring a resource, genetic covariance may be either negative or positive at equilibrium, depending on the fitness function and the input of mutational variance. The form of G does not necessarily reveal the constraint on resource acquisition inherent in the system, and therefore studies estimating G do not test for the existence of life-history tradeoffs. Characters may evolve in patterns that are unpredictable from G. Experiments are suggested that would indicate if this model could explain observations of positive genetic covariance.  相似文献   

2.
We combine stoichiometry theory and optimal foraging theory into the MacArthur consumer-resource model. This generates predictions for diet choice, coexistence, and community structure of heterotroph communities. Tradeoffs in consumer resource-garnering traits influence community outcomes. With scarce resources, consumers forage opportunistically for complementary resources and may coexist via tradeoffs in resource encounter rates. In contrast to single currency models, stoichiometry permits multiple equilibria. These alternative stable states occur when tradeoffs in resource encounter rates are stronger than tradeoffs in elemental conversion efficiencies. With abundant resources consumers exhibit partially selective diets for essential resources and may coexist via tradeoffs in elemental conversion efficiencies. These results differ from single currency models, where adaptive diet selection is either opportunistic or selective. Interestingly, communities composed of efficient consumers share many of the same properties as communities based on substitutable resources. However, communities composed of relatively inefficient consumers behave similarly to plant communities as characterized by Tilman’s consumer resource theory. The results of our model indicate that the effects of stoichiometry theory on community ecology are dependent upon both consumer foraging behavior and the nature of resource garnering tradeoffs.  相似文献   

3.
Steiner UK 《Oecologia》2007,152(2):201-210
An organism’s investment in different traits to reduce predation is determined by the fitness benefit of the defense relative to the fitness costs associated with the allocation of time and resources to the defense. Inherent tradeoffs in time and resource allocation should result in differential investment in defense along a resource gradient, but competing models predict different patterns of investment. There are currently insufficient empirical data on changes in investment in defensive traits or their costs along resource gradients to differentiate between the competing allocation models. In this study, I exposed tadpoles to caged predators along a resource gradient in order to estimate investment in defense and costs of defense by assessing predator-induced plasticity. Induced defenses included increased tail depth, reduced feeding, and reduced swimming activity; costs associated with these defenses were reduced developmental rate, reduced growth, and reduced survival. At low resource availability, these costs predominately resulted in reduced survival, while at high resource availability the costs yielded a reduced developmental rate. Defensive traits responded strongly to predation risk, but did not respond to resource availability (with the exception of feeding activity), whereas traits construed as costs of defenses showed the opposite pattern. Therefore, defensive traits were highly sensitive to predation risk, while traits construed as costs of defense were highly sensitive to resource allocation tradeoffs. This difference in sensitivity between the two groups of traits may explain why the correlation between the expression of defensive traits and the expression of the associated defense costs was weak. Furthermore, my results indicate that genetic linkages and mechanistic integration of multiple defensive traits and their associated costs may constrain time and resource allocation in ways that are not addressed in existing models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth‐reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable.  相似文献   

5.
Generalist consumers commonly coexist in many ecosystems. Yet, eco-evolutionary theory poses a problem with this observation: generalist consumers (usually) cannot coexist stably. To provide a solution to this theory-observation dissonance, we analyzed a simple eco-evolutionary consumer resource model. We modeled consumption of two nutritionally interactive resources by species which evolve their resource encounter rates subject to a tradeoff. As shown previously, consumers can ecologically coexist through tradeoffs in resource encounter rates; however, this coexistence is evolutionary unstable. Here, we find that nutritional interactions between resources and the shape of acquisition tradeoffs produce very similar evolutionary outcomes in isolation. Specifically, they produce evolutionarily stable communities composed either of two specialists (concave acquisition tradeoff or antagonistic nutrition) or a single generalist (convex acquisition tradeoff or complementary nutrition). Thus, the generalist-coexistence problem remains. However, the combination of nonlinear resource acquisition tradeoffs with nonlinear resource nutritional relationships creates selection forces that can push and pull against each other. Ultimately, this push-pull dynamic can stabilize the coexistence of two competing generalist consumers—but only when we coupled a convex acquisition tradeoff with antagonistic nutrition. Thus, our model here offers some resolution to the generalist-coexistence problem in eco-evolutionary, consumer-resource theory.  相似文献   

6.
Tradeoffs occur between a variety of traits in a diversity of organisms, and these tradeoffs can have major effects on ecological and evolutionary processes. Far less is known, however, about tradeoffs between male traits that affect mate attraction than about tradeoffs between other types of traits. Previous results indicate that females of the variable field cricket, Gryllus lineaticeps, prefer male songs with higher chirp rates and longer chirp durations. In the current study, we tested the hypothesis that a tradeoff between these traits affects the evolution of male song. The two traits were negatively correlated among full-sibling families, consistent with a genetically based tradeoff, and the tradeoff was stronger when nutrients were limiting. In addition, for males from 12 populations reared in a common environment, the traits were negatively correlated within populations, the strength of the tradeoff was largely invariant across populations, and the within-population tradeoff predicted how the traits have evolved among populations. A widespread tradeoff thus affects male trait evolution. Finally, for males from four populations assayed in the field, the traits were negatively correlated within and among populations. The tradeoff is thus robust to the presence of environmental factors that might mask its effects. Together, our results indicate there is a fundamental tradeoff between male traits that: (i) limits the ability of males to produce multiple attractive traits; (ii) limits how male traits evolve; and (iii) might favour plasticity in female mating preferences.  相似文献   

7.
Tradeoffs – negative reciprocal causal relationships in net benefits between trait magnitudes – have not always been studied in depth appropriate to their central role in life‐history analysis. Here we focus on allocation tradeoffs, in which acquisition of a limiting resource requires allocation of resource to alternative traits. We identify the components of this allocation process and emphasize the importance of quantifying them. We then propose categorizing allocation tradeoffs into linear, concave and convex relationships based on the way that resource allocation yields trait magnitudes under the tradeoff. Linear relationships are over‐represented in the literature because of typically small data sets over restricted ranges of trait magnitudes, an emphasis on simple correlation analysis, and a failure to remove variation associated with acquisition of the limiting resource in characterizing the tradeoff. (We provide methods for controlling these acquisition effects.) Non‐linear relationships have been documented and are expected under plausible conditions that we summarize. We note ways that shifting environments and biological features yield plasticity of tradeoff graphs. Finally, we illustrate these points using case studies and close with priorities for future work.  相似文献   

8.
Phenotypic variation is common in most pathogens, yet the mechanisms that maintain this diversity are still poorly understood. We asked whether continuous host variation in susceptibility helps maintain phenotypic variation, using experiments conducted with a baculovirus that infects gypsy moth (Lymantria dispar) larvae. We found that an empirically observed tradeoff between mean transmission rate and variation in transmission, which results from host heterogeneity, promotes long‐term coexistence of two pathogen types in simulations of a population model. This tradeoff introduces an alternative strategy for the pathogen: a low‐transmission, low‐variability type can coexist with the high‐transmission type favoured by classical non‐heterogeneity models. In addition, this tradeoff can help explain the extensive phenotypic variation we observed in field‐collected pathogen isolates, in traits affecting virus fitness including transmission and environmental persistence. Similar heterogeneity tradeoffs might be a general mechanism promoting phenotypic variation in any pathogen for which hosts vary continuously in susceptibility.  相似文献   

9.
Neutral theory in ecology is aimed at describing communities where species coexist due to similarities rather than the classically posited niche differences. It assumes that all individuals, regardless of species identity, are demographically equivalent. However, Hubbell suggested that neutral theory may describe even niche communities because tradeoffs equalize fitness across species which differ in their traits. In fact, tradeoffs can involve stabilization as well as fitness equalization, and stabilization involves different dynamics and can lead to different community patterns than neutral theory. Yet the important question remains if neutral theory provides a robust picture of all fitness-equalized communities, of which communities with demographic equivalence are one special case. Here, I examine Hubbell’s suggestion for a purely fitness-equalizing interspecific birth–death tradeoff, expanding neutral theory to a theory describing this broader class of fitness-equalized communities. In particular, I use a flexible framework allowing examination of the influence of speciation dynamics. I find that the scaling of speciation rates with birth and death rates, which is poorly known, has large impacts on community structure. In most cases, the departure from the predictions of current neutral models is substantial. This work suggests that demographic and speciation complexities present a challenge to the future development and use of neutral theory in ecology as null model. The framework presented here will provide a starting point for meeting that challenge, and may also be useful in the development of stochastic niche models with speciation dynamics.  相似文献   

10.
As tradeoffs limit the maximum Darwinian fitness individuals can reach, measuring reliably the strength of tradeoffs using appropriate metrics is of prime importance to understand the evolution of traits under constraints. Tradeoffs involving phenotypic traits and fitness components, however, are difficult to quantify in free‐ranging populations because of confounding effects due to environmental variation and individual heterogeneity. Furthermore, although some methods have been used previously to quantify tradeoffs, these methods cannot be applied with respect to binary traits, which are common to describe life histories (e.g. probability of reproduction, nesting success, offspring survival). Here, we demonstrate how to measure reliably the strength of tradeoffs involving binary traits using (auto)correlation estimates obtained from generalized linear (mixed) models. We first propose a standardized approach that accounts for the variation in the nature of the tradeoffs being compared (e.g. continuous/binary traits, repeated/non‐repeated measures), and then apply this method to longitudinal data from two contrasting species of large herbivores. Empirical estimates of tradeoffs varied among traits, and between‐species comparisons suggested that reproductive tradeoffs between successive breeding attempts might only occur in capital breeders. The empirical results we obtained clearly demonstrate that the method we provide allows measuring reliably the strength of tradeoffs under most circumstances, including tradeoffs on binary traits. Our original approach therefore offers an important first step for comparing the strength and, hence, the relative importance of different tradeoffs, and opens the door to a better understanding of the evolution of life history traits in free‐ranging populations.  相似文献   

11.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components.  相似文献   

12.
We present two theoretical approaches to investigate whether organismal complexity, defined as the number of quantitative traits determining fitness, and the potential for adaptive diversification are correlated. The first approach is independent of any specific ecological model and based on curvature properties of the fitness landscape as a function of the dimension of the trait space. This approach indeed suggests a positive correlation between complexity and diversity. An assumption made in this first approach is that the potential for any pair of traits to interact in their effect on fitness is independent of the dimension of the trait space. In the second approach, we circumvent making this assumption by analyzing the evolutionary dynamics in an explicit consumer‐resource model in which the shape of the fitness landscape emerges from the underlying mechanistic ecological model. In this model, consumers are characterized by several quantitative traits and feed on a multidimensional resource distribution. The consumer's feeding efficiency on the resource is determined by the match between consumer phenotype and resource item. This analysis supports a positive correlation between the complexity of the evolving consumer species and its potential to diversify with the additional insight that also increasing resource complexity facilitates diversification.  相似文献   

13.
Maternal effects on offspring size can have a strong effect on fitness, as larger offspring often survive better under harsh environmental conditions. Selection should hence favour mothers that find an optimal solution to the offspring size versus number tradeoff. If environmental conditions are variable, there will not be a single optimal offspring size, as predicted in a constant environment, but plastic responses can be favoured. To be able to adjust offspring size in an adaptive manner, mothers have to use environmental cues to predict offspring environmental conditions. Cues can be unreliable, however, particularly in species where individuals occupy different niches at different life stages. Here we model the evolution of plasticity of offspring size when the environmental cues mothers use to predict the conditions experienced by their offspring are not perfectly reliable. Our results show that plastic strategies are likely to be superior to fixed strategies in a stochastically varying environment when the environmental cues are at least moderately reliable, with the threshold depending on plasticity costs and the difference of resources available to mothers. Plasticity is more likely to occur if resource availability is not too different between environments. For any given scenario, plasticity in offspring size is favoured if offspring survival varies greatly between environmental states. Whenever plastic strategies are optimal, the occurring switches performed by mothers between small and large offspring are predicted to be substantial, as small adjustments are unlikely to reap fitness benefits great enough to overcome the costs of plasticity.  相似文献   

14.
Tradeoffs have long been an essential part of the canon explaining the maintenance of species diversity. Despite the intuitive appeal of the idea that no species can be a master of all trades, there has been a scarcity of linked demographic and physiological evidence to support the role of resource use tradeoffs in natural systems. Using five species of Chihuahuan desert summer annual plants, I show that demographic tradeoffs driven by short‐term soil moisture variation act as a mechanism to allow multiple species to partition a limiting resource. Specifically, by achieving highest fitness in either rainfall pulse or interpulse periods, variability reduces fitness differences through time that could promote coexistence on a limiting resource. Differences in fitness are explained in part by the response of photosynthesis to changing soil moisture. My results suggest that increasing weather variability, as predicted under climate change, could increase the opportunity for coexistence in this community.  相似文献   

15.
Phenotypic variability in a microorganism population is thought to be advantageous in fluctuating environments, however much remains unknown about the precise conditions for this advantage to hold. In particular competition for a growth-limiting resource and the dynamics of that resource in the environment modify the tradeoff between different effects of variability. Here we investigate theoretically a model system for variable populations under competition for a flowing resource that governs growth (chemostat model) and changes with time. This environment generally induces density-dependent selection among competing sub-populations. We characterize quantitatively the transient dynamics in this system, and find that equilibration between total population density and environment can occur separately and with a distinct timescale from equilibration between competing sub-populations. We analyze quantitatively the two opposing effects of heterogeneity-transient response to change, and fitness at equilibrium-and find the optimal strategy in a fluctuating environment. We characterize the phase diagram of the system in term of its optimal strategy and find it to be strongly dependent on the typical timescale of the environment and weakly dependent on the internal parameters of the population.  相似文献   

16.
Combining genetic variation and phenotypic plasticity in tradeoff modelling   总被引:4,自引:0,他引:4  
Tradeoffs lead to antagonistic relationships between phenotypic traits and are thought to be determined both genetically and environmentally. We present here an allocation model that distinguishes between the genetic and environmental components of variation in resource allocation. In this model we introduced plasticity of resource allocation which was considered to be an adaptive response to environmental variations. The results show that resource allocation plasticity is a key parameter for the existence of environmental (i.e. inter environments and intra genotype) correlations and is therefore necessary to detect environment-induced tradeoffs. We also investigated the impact of the resource allocation plasticity and other factors on genetic (i.e. inter genotypes) correlations. Our results show that resource allocation plasticity induces a masking effect of tradeoffs when studying genetic correlations and increases the masking effect of resource variation by making apparent correlations positive when negative correlations are expected. In addition, by simulating different sources of resource acquisition variation, we demonstrated that resource variation might have different effects on correlations according to the experimental design and the studied biological material. Further development of this model may be used to investigate the theoretical implications of tradeoffs in evolutionary biology and to improve design and interpretation of experimental studies.  相似文献   

17.
Mathematical models of consumer-resource systems are used to explore the evolution of traits related to resource acquisition in a generalist consumer species that is capable of exploiting two resources. The analysis focuses on whether evolution of traits determining the capture rates of two resources by a consumer species produce one generalist, two specialists, or all three types, when all types are characterized by a common fitness function. In systems with a stable equilibrium, evolution produces one generalist or two specialists, depending on the second derivative of the trade-off relationship. When there are sustained population fluctuations, the nature of the trade-off between the consumer's capture rates of the two resources still plays a key role in determining the evolutionary outcome. If the trade-off is described by a choice variable between zero and one that is raised to a power n, polymorphic states are possible when n > 1, which implies a positive second derivative of the curve. These states are either dimorphism, with two relatively specialized consumer types, or trimorphism, with a single generalist type and two specialists. Both endogenously driven consumer-resource cycles, and fluctuations driven by an environmental variable affecting resource growth are considered. Trimorphic evolutionary outcomes are relatively common in the case of endogenous cycles. In contrast to a previous study, these trimorphisms can often evolve even when new lineages are constrained to have phenotypes very similar to existing lineages. Exogenous cycles driven by environmental variation in resource growth rates appear to be much less likely to produce a mixture of generalists and specialists than are endogenous consumer-resource cycles.  相似文献   

18.
The modulation of fitness by single mutational substitutions during environmental change is the most fundamental consequence of natural selection. The antagonistic tradeoffs of pleiotropic mutations that can be selected under changing environments therefore lie at the foundation of evolutionary biology. However, the molecular basis of fitness tradeoffs is rarely determined in terms of how these pleiotropic mutations affect protein structure. Here we use an interdisciplinary approach to study how antagonistic pleiotropy and protein function dictate a fitness tradeoff. We challenged populations of an RNA virus, bacteriophage Φ6, to evolve in a novel temperature environment where heat shock imposed extreme virus mortality. A single amino acid substitution in the viral lysin protein P5 (V207F) favored improved stability, and hence survival of challenged viruses, despite a concomitant tradeoff that decreased viral reproduction. This mutation increased the thermostability of P5. Crystal structures of wild-type, mutant, and ligand-bound P5 reveal the molecular basis of this thermostabilization—the Phe207 side chain fills a hydrophobic cavity that is unoccupied in the wild-type—and identify P5 as a lytic transglycosylase. The mutation did not reduce the enzymatic activity of P5, suggesting that the reproduction tradeoff stems from other factors such as inefficient capsid assembly or disassembly. Our study demonstrates how combining experimental evolution, biochemistry, and structural biology can identify the mechanisms that drive the antagonistic pleiotropic phenotypes of an individual point mutation in the classic evolutionary tug-of-war between survival and reproduction.  相似文献   

19.
An individual of modular organisms, such as plants and fungi, consists of more than one module that is sometimes physically and physiologically connected with each other. We examined effects of translocation costs, resource–fitness relationships and original resource conditions for modules on the optimal resource translocation strategy for reproductive success in modular organisms with simple models. We considered two types of translocation cost: amount-dependent and ratio-dependent costs. Three optimal resource translocation strategies were recognized: all resource translocation (ART), partial resource translocation (PRT), and no resource translocation (NRT). These strategies depended on the translocation cost, shape of resource–fitness curve, and original resource condition for each module. Generally, a large translocation cost and a concave resource–fitness relationship promoted NRT or PRT. Meanwhile, a small translocation cost and convex resource–fitness relationship facilitated ART. The type of translocation cost did not strongly affect the optimal resource translocation patterns, although ART was never an optimal strategy when the cost was ratio-dependent. Resource translocation patterns found in modular plants were discussed in the light of our model results.  相似文献   

20.
Levins's fitness set approach has shaped the intuition of many evolutionary ecologists about resource specialization: if the set of possible phenotypes is convex, a generalist is favored, while either of the two specialists is predicted for concave phenotype sets. An important aspect of Levins's approach is that it explicitly excludes frequency-dependent selection. Frequency dependence emerged in a series of models that studied the degree of character displacement of two consumers coexisting on two resources. Surprisingly, the evolutionary dynamics of a single consumer type under frequency dependence has not been studied in detail. We analyze a model of one evolving consumer feeding on two resources and show that, depending on the trait considered to be subject to evolutionary change, selection is either frequency independent or frequency dependent. This difference is explained by the effects different foraging traits have on the consumer-resource interactions. If selection is frequency dependent, then the population can become dimorphic through evolutionary branching at the trait value of the generalist. Those traits with frequency-independent selection, however, do indeed follow the predictions based on Levins's fitness set approach. This dichotomy in the evolutionary dynamics of traits involved in the same foraging process was not previously recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号