共查询到20条相似文献,搜索用时 15 毫秒
1.
A Simulation Model for Dry Matter Partitioning in Cucumber 总被引:22,自引:0,他引:22
A dynamic model is developed for the simulation of the dailydry matter distribution between the generative and vegetativeplant parts and the distribution among individual fruits ingreenhouse cucumber. The model is based on the hypothesis thatdry matter partitioning is regulated by the sink strengths ofthe plant organs. The sink strength of an organ is defined hereas its potential growth rate, i.e. the growth rate at non-limitingassimilate supply. The sink strength of each individual fruitis described as a function of its temperature sum after anthesisand the actual temperature, that of the vegetative plant partsas a function of actual temperature only. The formation rateof non-aborting fruits is essentially a function of the source/sinkratio. Model results agreed well with the measured fluctuating distributionof dry matter between fruits and vegetative parts. The measuredeffects of three intensities of fruit removal were also simulatedsatisfactorily. When simulating the partitioning among individualfruits the final fruit size was simulated quite well. However,the growth rate of young fruits was usually overestimated andthat of old fruits underestimated, because of dominance amongfruits. This phenomenon could be accounted for by incorporatingpriority functions into the model. Finally, a sensitivity analysisof the model was performed to investigate the effects of someclimatic factors, manipulations of the number of fruits on aplant and model parameters on dry matter distribution. Strategiesto manipulate the dry matter distribution are discussed.Copyright1994, 1999 Academic Press Cucumber, Cucumis sativus (L.), dry matter distribution, fruit growth, partitioning, simulation model, source-sink 相似文献
2.
The dry matter partitioning in vegetative plants of Dactylisglomerata was studied from experiments performed in controlledenvironments. Plants were grown hydroponically in growth chambers,at two constant temperatures (17 and 25 °C). In both experimentsthe root fraction decreased regularly with time, an effect thatwas more accentuated in the higher temperature regime. In orderto explain the change in dry matter partitioning, the experimentalshoot and root growth were analysed using a carbon budget modelwhich includes shoot and root maintenance requirements. Themodel predicts a relationship between the root specific growthrate and the product of shoot specific growth rate and shootto root dry weight ratio. In the range of experimental accuracy,this relationship was found to be linear at both temperatures,which should indicate that the partitioning coefficients andthe root maintenance coefficient remained constant during vegetativegrowth. The effect of temperature on the value of these coefficientscan be specified from a linear regression analysis. Between17 and 25 °C, the root maintenance coefficient increasedby about a factor of two, whereas the partitioning coefficientsdid not vary significantly. On the basis of these results, itwas shown that the decrease in root fraction during vegetativegrowth should be mainly attributed to the decrease in net specificactivity of shoots.Copyright 1994, 1999 Academic Press Dactylis glomerata L., vegetative growth, model, partitioning, root:shoot ratio, shoot specific activity, maintenance requirements 相似文献
3.
Trifolium repens has two types of root, one derived from theseed and the adventitious roots derived from the stolon nodes.It has been suggested that these two systems have differentpotentials for supporting growth. This paper presents a comparisonof plants grown on single seedling or adventitious roots anddemonstrates that although the shoot: root ratios for the twotypes differ this may be explained by differing shoot morphologies.Comparison of the lamina: root ratios for the two types of plantproduced no statistically significant differences and it isproposed that the two types of root system do not differ intheir relationship with leaf growth. A mechanism for large diametertap root formation is suggested. white clover, Trifolium repens L., adventitious roots, seedling roots, shoot: root ratio 相似文献
4.
The accumulation and partitioning of dry matter was determinedin tanier plants irrigated with fractions of the water lostthrough evapotranspiration (WLET) in an effort to establishgrowth analysis data from which a tanier growth (simulationmodel could be developed. The irrigation regimes were basedon Class A pan factors ranging from 0·33 to 1·32with increments of 0·33. Tanier plants were planted inthe field and harvested for biomass production about every 6weeks during the growing season. At each harvest, plants wereseparated into various plant parts, and their dry matter contentwas determined. The first 90 d after planting (DAP) were characterizedby low rates of dry matter accumulation, with only leaves andpetioles showing substantial growth. A grand growth period followedin which leaves, petioles, and roots rapidly accumulated drymatter until 278 DAP. During this period, plants that received0·99 and 1·32 WLET exhibited similar total drymatter content, and this was significantly greater than in plantssupplied with 0·33 and 0·66 WLET. Cormel dry mattercontent peaked at 29% of total plant dry matter by 322 DAP inplants replenished with 1·32 WLET. Partitioning of drymatter to cormels in other treatments was significantly reduced.Partitioning of dry matter to corms increased linearly throughoutthe growing season in all treatments. Dry matter partitioningto suckers and the number of suckers formed from plants replenishedwith 0·33 and 0·66 WLET was greater than in themore irrigated treatments.Copyright 1994, 1999 Academic Press Tanier, Xanthosoma spp., growth, dry matter partition, irrigation, evapotranspiration 相似文献
5.
Maize (Zea mays L.) productivity under drought stress dependsto some extent upon a hybrid's capacity to produce and translocateassimilate to its developing kernels during the stress periodand/or after the stress is relieved. The objective of this studywas to evaluate differences in carbon and nitrogen accumulationand partitioning under drought stress among maize hybrids thatdiffer in yield potential and/or physiological metabolism duringreproductive development. The hybrids B73 x LH38, FS854, B73xMol7and US13 were subjected to drought stress from the 7th leafstage until pollination was completed, at which time the soilof the stressed plots was replenished with water. For d. wtand chemical constituent determinations, plants of each hybridwere harvested from the irrigated and drought stressed plotsat silking, mid-grain fill, and physiological maturity. Averagedover hybrids, vegetative biomass at silking was reduced 25%as a result of the drought stress treatment, with B73 x LH38and FS854 accumulating more total biomass during the later portionof grain fill than the other two hybrids under both soil moisturetreatments. At silking, the total non-structural carbohydratecontent of the hybrids' vegetative tissue was not changed asa result of drought stress, whereas their reduced nitrogen (N)contents were decreased by an average of 33%. B73 x LH38 andFS854 had greater grain carbohydrate and reduced N contentsunder irrigation and smaller decreases in those variables asa result of soil moisture deficit than did the other two hybrids.These results indicate that the greater drought tolerance ofB73 x LH38 and FS854 to stress imposed during vegetative andearly reproductive development resulted from their more activeN uptake and assimilation and sugar production during the laterportion of grain fill and from their more efficient partitioningof assimilate to the developing kernels. Zea mays L., maize, drought stress, nitrogen, carbohydrates, hybrids, partitioning 相似文献
6.
Partitioning of Dry Matter and the Deposition and Use of Stem Reserves in a Semi-dwarf Wheat Crop 总被引:10,自引:0,他引:10
BORRELL ANDREW K.; INCOLL L. D.; SIMPSON RICHARD J.; DALLING MICHAEL J. 《Annals of botany》1989,63(5):527-539
An experiment was carried out within a crop of spring wheat(cv. Condor) to examine dry matter partitioning between thedeveloping stem and ear, and to estimate the magnitude of carbonstored in the stem both before and after anthesis, and the subsequentutilization of these reserves during grain growth. The amount of reserve laid down and mobilized was estimatedfrom analysis of data for changes in masses of stem and leaffrom frequent harvests. The rate of change of the dry mass ofthe individual plant organs was expressed as a proportion ofthe rate of change of the total dry mass of the large culm.This value was called the Allocation Ratio (AR). It was assumedthat assimilate was transferred directly from the stem intothe growing ear, and not into other organs. This paper providesevidence for the idea that the stem intemodes of wheat are ableto accumulate and subsequently mobilize a dry matter reserve.The accumulation and subsequent mobilization of fructans inthe stem was demonstrated using ascending thinlayer chromatography.On a dry matter basis the large culms of the wheat crop accumulatedall of their stem reserves after anthesis (041 g perlarge culm; 98·4 g m1). After adjusting the lossof mass by 33% to allow for respiration, it was concluded thatpost-anthesis stem reserves may have contributed at least 21%of the final grain yield of this crop. Triticum aestivum L., semi-dwarf spring wheat, dry matter partitioning, stem reserves, fructans 相似文献
7.
Kumakov V. A. Evdokimova O. A. Buyanova M. A. 《Russian Journal of Plant Physiology》2001,48(3):359-363
In microplot field experiments conducted over the course of 12 years, the accumulation of dry matter was recorded in the leaves, stems, and ears of the primary shoots of plants of four cultivars of spring wheat (Triticum aestivumL.) differing in productivity and drought resistance. The contribution of organs to the accumulation of dry matter by the shoot from emergence to anthesis was calculated, and relative changes in the weight of the ear after anthesis were assessed. In all the cultivars, the contribution of the leaves was the same; however, the share of the ear was greater in short-stem cultivars of the intensive type in which the leaves were more active during the time of grain filling. Furthermore, this load increased, and the relative increment in the ear weight after flowering decreased in the years of drought, because the contribution of the leaves did not depend on water supply during the growing season. During these years, the contribution of the ear increased in the plants of all the cultivars. The authors conclude that, in arid regions, in addition to drought resistance, the cultivar should display such a ratio between the ear weight and the weight of leaves that would still ensure satisfactory grain filling 相似文献
8.
Regulation of the Partitioning of Dry Matter and Calcium in Cucumber in Relation to Fruit Growth and Salinity 总被引:1,自引:0,他引:1
The regulation of the partitioning of dry matter and calciumin relation to fruit growth was investigated in cucumber plantsgrown in the salinity range of 3-8 mS cm-1 in NFT (NutrientFilm Culture), with or without a fruit pruning treatment. Thedry weight gain of the plants was proportional to the outdoorintegral irradiance, with a common daily rate of 1 g MJ-1 m-2in two crops grown under summer (18 MJ m-2 d-1) and autumn (7MJ m-2 d-1) conditions. Within the salinity range studied, thereduction of plant dry weight was 9% mS-1 cm-1. However, fruitdry weight was only reduced at salinities above 5·5 mScm-1, although the daily dry matter accumulation by fruit, asa percentage of total dry matter accumulation, was increased.Salinity reduced the dry matter accumulation in the young shootproportionally more than in the fruit. Although the total plantCa content was reduced by 13% mS-1 cm-1, the Ca content of theyoung shoot was reduced by 16·6%, compared to 11% inthe fruit. Pruning fruit reduced neither plant dry weight norCa uptake. The growth of the remaining fruit, and to a lesserdegree of the young shoot, accounted for all surplus assimilates.Thus, fruit were the dominant sinks for assimilates whilst themature leaves were the strongest sinks for Ca. Nevertheless,the fruit sustained the capacity to import Ca better than theyoung shoot, when supplies of both assimilates and Ca were reducedby high salinity.Copyright 1994, 1999 Academic Press Cucumber, Cucumis sativus L., salinity, fruit pruning, dry matter and calcium 相似文献
9.
Accumulation and Partitioning of Dry Matter in Taro [Colocasia esculenta (L.) Schott] 总被引:1,自引:0,他引:1
A field study was conducted as part of an ongoing effort tocollect data on patterns of leaf area development and dry matteraccumulation and partitioning among various plant parts duringgrowth and development of two taro cultivars. Plants were harvestedfor biomass about every 6 weeks during the growing season. Ateach harvest, plants were separated into various plant parts,and their dry matter content was determined. The first 80 dafter planting were characterized by low rates of dry matteraccumulation, with only leaves, petioles, and roots showingsubstantial growth. Afterwards, increases in total dry matterwere mainly the result of corm and sucker growth. Corm bulkingoccurred after the attainment of maximal leaf area indices.The absence of an optimal leaf area index for a longer periodof time may have prevented the realization of higher dry matteryields. The partitioning of dry matter to the corms of bothcultivars remained almost constant especially after 150 d afterplanting. This process was in contrast to the partitioning ofdry matter to the suckers, which increased significantly untilthe end of the growing cycle.Copyright 1995, 1999 Academic Press Taro, Colocasia sp., growth, dry matter partitioning 相似文献
10.
Compensatory Changes in the Partitioning of Dry Matter in Relation to Nitrogen Uptake and Optimal Variations in Growth 总被引:6,自引:0,他引:6
Equations are derived relating relative growth rate (RGR) toroot:shoot ratio, root length, nitrogen inflow rate, leaf area,photosynthesis and carbon and nitrogen concentrations in theplant. The extents to which changes in specific root lengthand root: shoot ratio can compensate for the effects of lowN availability upon RGR are examined. Such responses could haveseveral compensatory functions: maximizing RGR; maintaininggrowth in which the activities of root and shoot limit RGR equally;and maximizing the efficiency of increase in RGR. Growth, nitrogen, carbon, dry matter, partitioning, root:shoot ratio, relative growth rate 相似文献
11.
The flowering mutant dn in sweet pea was used as a tool to study14C-assimilate and dry matter partitioning with respect to nutrientdiversion theories on the control of flower initiation. Wildtype plants (Dnh) are photoperiodic and exhibit late floweringand profuse basal branching in short days while mutant plants(dn) are day neutral, early flowering and devoid of basal laterals.In short days, dn plants exported a significantly greater proportionof assimilate acropetally than (Dnh) plants and the upper portionof dn plants had a greater dry weight. These differences werereduced dramatically when basal laterals were excised regularlyfrom the (Dnh) plants although the difference in flowering remained.However, the effect of dn on resource allocation within theapical region may be more important in regard to flowering thanthe effect on acropetal versus basipetal movement. In shortdays, the dn plants partitioned significantly more resourcesinto their internodes and petioles, and less into their leaflets,than Dnh plants as shown by dry weight and 14C-assimilate measurements.These differences were apparent from as early as node 7 up tothe node of flower initiation in dn plants (node 30) and theywere not eliminated by removal of basal laterals from Dnh plants.Differences between dn and Dnh plants in partitioning and floweringwere largely eliminated under long days. The fact that in thisspecies a single gene influences both resource allocation andflower initiation lends further support to nutrient diversionhypotheses on the control of flowering. Key words: Assimilate partitioning, branching, flowering, mutant, sweet pea 相似文献
12.
Infection by Crinipellis perniciosa on cacao seedlings prevented the abscission of cotyledons which normally abscise within 32–61 days from seed sowing. The early growth and development of control and artificially inoculated seedlings was investigated for root dry mass (RDM), shoot dry mass (SDM), shoot‐to‐root ratio (SRR), total dry mass (TDM), cotyledonary dry mass (CDM) and cotyledonary water content (CWC). Cotyledonary reserve mobilization was estimated at 69 and 56% at 5 weeks and 79 and 64% at 8 weeks in control and infected seedlings, respectively. Infection induced the enlargement of tissues but was not accompanied by an increase in dry mass. Infection both delayed and reduced the utilization of cotyledonary food reserves resulting in slower accumulation of RDM, SDM and TDM culminating in a reduction of growth by a factor of 1.6 at 8 weeks. However, the SRR of inoculated plants was similar to that of control plants, suggesting that the balance between the root and shoot systems exists which is unchanged by the effect of the pathogen. CWC was decreased upon senescence to an average of 65% at abscission. The prevention of cotyledonary abscission in infected seedlings is suggested to be due in part to the CDM remaining above a critical level of 20% of the initial CDM. The implication of this response in relation to the infection biology of the pathogen is discussed. 相似文献
13.
Effect of Source-to-sink Ratio on Partitioning of Dry Matter and14C-photoassimilates in Wheat during Grain Filling 总被引:3,自引:0,他引:3
CRUZ-AGUADO JORGE A.; REYES FERNANDO; RODES ROSA; PEREZ ISEL; DORADO MAYDELIN 《Annals of botany》1999,83(6):655-665
Increasingly, wheat (Triticum aestivumL.) is being grown intropical environments, but there is inadequate information aboutthe physiological processes limiting yield. In this investigation,the source:sink ratio was manipulated to examine the performanceof source-sink interactions after anthesis and the factor(s)limiting grain filling in tropical conditions. Plants of threewheat cultivars, Cuba C-204, Candeias and IAC-60, were artificiallymodified to give different source:sink ratios. The treatmentswere: I, Control; II, all spikelets on one side of the spikeremoved; III, all spikelets removed except the four centralspikelets of the spike; and IV, flag leaf blade removed. Thedistribution of dry matter between kernels and stem internodeswas analysed at harvest in all three cultivars. Partitioningof14C-photoassimilates was measured on three occasions afteranthesis in the cultivar Cuba C-204. Modifications of source:sinkratio led to different patterns of allocation of dry matterbetween cultivars and sowing dates. The reduction in sink sizein treatment II produced no significant change in the mass pergrain in the January sowing, but this was enhanced in two cultivarsin the November sowing. In treatment III, both mass per grainand translocation of14C-photoassimilates declined, apparentlydue to feedback inhibition of photosynthesis. The participationof stem reserves in grain filling and the existence of genotypicdifferences in response to availability of photoassimilateswere corroborated. The pattern of partitioning of dry matterobserved in plants in this investigation suggests a source limitation,particularly during the November sowing. This pattern differedmarkedly from that in other studies, most of which have beenmade in temperate areas.Copyright 1999 Annals of Botany Company Photoassimilates, sink, source, partitioning, grain filling, wheat. 相似文献
14.
Dry Matter Assimilation and Partitioning in Pepper Cultivars Differing in Susceptibility to Stress-induced Bud and Flower Abscission 总被引:1,自引:0,他引:1
Stress-induced abscission of buds and flowers is a constraintto the production of peppers (Capsicum annuum L.). Susceptibilityof pepper cultivars to stress-induced abscission may be relatedto assimilate levels and partitioning. Growth analysis experimentswere conducted in the field to determine whether cultivars differingin susceptibility to stress-induced abscission showed correspondingdifferences in growth rates and dry matter partitioning whensubjected to low light stress. With the stress susceptible cultivar'Shamrock', reduction in net assimilation rate (NAR) and relativegrowth rate (RGR) was greater under low light stress than withthe more tolerant cultivar 'Ace'. Compared to 'Ace', 'Shamrock'partitioned a smaller proportion of dry matter into reproductiveorgans and a larger proportion into expanded leaves. Cultivarsdid not differ in the amount of dry matter partitioned to youngleaves or in the extent to which accumulation of dry matterby young leaves was reduced by low light stress. Other experimentsconducted in growth chambers and greenhouse examined the effectof removal of leaves less than 3 cm long on high temperatureand low light stress-induced bud and flower abscission. Forboth 'Ace' and 'Shamrock', abscission was not altered by removalof these leaves. Preferential partitioning of assimilate toyoung leaves does not appear to be involved in stress-inducedabscission in these pepper cultivars.Copyright 1994, 1999 AcademicPress Pepper (Capsicum annuum L.), abscission, low light stress, high temperature stress, assimilate partitioning, assimilation/growth rate, growth analysis, defoliation 相似文献
15.
Cantaloupe (Cucumis melo L.) plants set groups of fruits whichgenerate large variations in the reproductive:vegetative dryweight balance. We studied the influence of fruit number onthe partitioning of dry matter and energy between the vegetativeand reproductive organs and among the seeds and the variousfruit tissues during the development of the first fruits. Over2 years and on two Charentais cantaloupe cultivars, fruit numberwas either limited to one or left unrestricted, which led tothe setting of two to six fruits. Because of the high lipidcontent in seeds, the distribution of assimilates was studiedin terms of energy equivalent as well as dry weight. Measureddry weights were converted into energy equivalents by calculatingthe construction cost of tissues from their elemental composition.Seeds differed from other tissues in showing an increase inconstruction cost, from 1.1 to 1.8 g CH2O g-1d. wt between 10and 30 d after pollination. For this reason, during the secondhalf of fruit development on plants with unrestricted fruitload, they made up to 31% of the fruit and 12% of the aerialpart of the whole plant in terms of dry weight, but 39 and 18%in terms of energy (glucose equivalents). The fraction of assimilatesallocated to the fruits showed a saturation-type response tothe number of fruits per plant. It did not increase in cultivarTalma above two fruits per plant, which could be due to a decreasingsink strength with fruit rank, whereas cultivar Galoubet maintaineda more homogeneous fruit size within plants. At a similar fruitload, the reproductive:vegetative dry weight balance differedbetween the 2 years of the experiment, probably because of variationin the fruit sink strength. Copyright 1999 Annals of BotanyCompany Charentais cantaloupe, Cucumis melo L., assimilate distribution, construction cost, development, dry matter partitioning, fruit load, seeds, sink strength. 相似文献
16.
The partitioning of dry matter to stems, leaves and pods ofgroundnut was examined as a function of mean air temperatureand water stress. Different levels of stress were imposed bygrowing plants on stored moisture at five different mean temperaturesbetween 19 °C and 31 °C and at four levels of saturationvapour pressure deficit. Stands of plants were grown in controlledenvironment glasshouses. The ratio of pod to shoot weight (PWR) was greatest at 22 °Cand decreased from 0.28 to 0.04 as temperature increased to31 °C. PWR was closely related to the number of pods longerthan 5.0 mm but negatively correlated with stem weight ratio.In general, water stress had a minor influence on PWR althoughpeg and pod production were stimulated in five of the nine treatments.Mild water stress promoted peg and pod production because reproductivegrowth was less affected than the growth of leaves and stems,the major sinks early in the reproductive phase. In one treatment,mild water stress increased PWR by a factor of 2.2 indicatingthat when adequate water is supplied to relieve a mild stress,PWR can be greatly increased. Key words: Temperature, Water deficit, Partitioning, Groundnut 相似文献
17.
A Shoot:Root Partitioning Model 总被引:14,自引:0,他引:14
A model for partitioning newly-synthesized structural dry matterbetween shoot and root is developed. It is based on a postulatedpartitioning function, which depends upon the relative levelsof carbon and nitrogen substrates, with parameters determiningthe control point and also the degree of control. The modelis used to investigate the relationships between plant specificgrowth rate, shoot:root ratio, and the specific activities ofshoot and root (which depend upon environment), during steady-stateexponential growth; the transient behaviour of the model isalso explored and oscillations in these quantities are obtained. Shoot:root ratio, specific growth rate, mathematical model, partition of assimilates 相似文献
18.
HOODA R. S.; RAO A. S.; LUTHRA Y. P.; SHEORAN I. S.; SINGH RANDHIR 《Journal of experimental botany》1986,37(10):1492-1502
The partitioning of N and utilization of C in various processesin chickpea (Cicer arielinum L.) was studied at 10 d intervalsfrom 35 to 135 d after sowing (DAS). Dry matter, C and N contentof the plant increased throughout the study period. The maximumamounts of C and N were fixed during the flowering and earlyfruiting phase (75115 DAS) and the minimum during theseed filling phase (115135 DAS). Efficiency of nitrogenfixation in relation to net C utilization and respiratory outputof the whole plant, nodules and nodulated root, varied widely,but was maximum during 75115 DAS. The crop experiencedsevere respiratory losses, particularly during the vegetativephase, when 83% of the total fixed C was lost in respiration.The crop produced 54·6 g of glucose units, 2·36g of seed dry matter and 495 mg of seed protein. Possible reasonsfor the poor efficiency of chickpea, in terms of photosynthateutilization for dry matter and protein production are discussed. Key words: Cicer arietinum, C, N, economy 相似文献
19.
A Transport-resistance Model of Forest Growth and Partitioning 总被引:8,自引:0,他引:8
The transport-resistance approach to dry-matter partitioningis used to construct a model of forest growth The model is atthe stand level for a monoculture of identical trees of thesame age There are five major organ compartments in the modelfoliage, branches, stem, coarse roots, and fine roots and mycorrhizasThe matter in each compartment is further subdivided into menstem,structure, carbon substrate, and nitrogen substrate The modelis driven by daily radiation including day length, ambient CO2concentration, and daily means of air and soil temperature Thefine roots are provided with constant values of soil mineralnitrogen pools (ammonium and nitrate) from which uptake occursGrowth over about 100 years is simulated for various environmentalconditions and soil mineral nitrogen levels, thinning is alsosimulated Natural tree death occurs within the model Particularattention is paid to dry matter partitioning patterns, and tothe dry matter per stem when death occurs The model is robustand responsive, and provides a framework for further developmentand application to many ecological and environmental scenarios,as well as to some forest management problems Model, forest, growth, partitioning 相似文献
20.
Effects of Nitrogen on the Development and Growth of the Potato Plant. 2. The Partitioning of Dry Matter, Nitrogen and Nitrate 总被引:3,自引:0,他引:3
Potatoes (Solanum tuberosum L.) were planted in pots in a temperature-controlledglasshouse The treatments consisted of three levels of nitrogensupply, ie 25, 8 and 16 g N per pot (treatments called N1, N2and N3) The accumulation rates of dry matter and nitrogen showedan upper limit of response to nitrogen supply, N3 plants continuedto accumulate dry matter and N at a constant rate for a longerperiod of time than N2 and N1 plants The uptake of nitrogenslowed earlier in time than the rate of dry matter accumulationin all treatments. The proportion of the dry matter in tubersof mature plants was not affected by nitrogen treatment, butthe start of tuber bulking was delayed in the N3 plants Thefinal proportion of total plant nitrogen in the tubers was similarfor all treatments The concentration of nitrogen in the drymatter of mature plants increased with the level of N supplyMaximum haulm weight increased with the level of N supply Apicallateral branches of the first and second order made up largerproportions of the total haulm dry weight and total leaf areaas more nitrogen was supplied. Yet, the distribution of drymatter over stems and leaves was not different between nitrogentreatments Stems were the most responsive to N treatment interms of N concentrations In each of the component organs (stems, leaves, tubers) theconcentration of nitrogen declined with time Fairly strong associationswere observed between the concentrations of N in component organs.The concentration of nitrate in leaves usually increased initiallywith leaf age, peaked and declined. A substantial part of thedifferences between treatments in the concentrations of N inleaf dry matter were attributable to differences in nitrateconcentration Nitrate in stems and tubers fell virtually belowthe limit of detection at total nitrogen concentrations of lessthan 1%, but increased in proportion to total N above that threshold,especially in stems Potato, Solanum tuberosum L, dry matter production, dry matter distribution, nitrogen nutrition, nitrogen distribution, nitrogen concentration 相似文献