首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

2.
Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth. A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2,3-dioxygenase (cbzE) was cloned and sequenced. The cbzE gene appeared to be plasmid localized and was found in a region that also harbors genes encoding a transposase, a ferredoxin that was homologous to XylT, an open reading frame with similarity to a protein of a meta-cleavage pathway with unknown function, and a 2-hydroxymuconic semialdehyde dehydrogenase. CbzE was most similar to catechol 2,3-dioxygenases of the 2.C subfamily of type 1 extradiol dioxygenases (L. D. Eltis and J. T. Bolin, J. Bacteriol. 178:5930–5937, 1996). The substrate range and turnover capacity with 3-chlorocatechol were determined for CbzE and four related catechol 2,3-dioxygenases. The results showed that CbzE was the only enzyme that could productively convert 3-chlorocatechol. Besides, CbzE was less susceptible to inactivation by methylated catechols. Hybrid enzymes that were made of CzbE and the catechol 2,3-dioxygenase of P. putida UCC2 (TdnC) showed that the resistance of CbzE to suicide inactivation and its substrate specificity were mainly determined by the C-terminal region of the protein.  相似文献   

3.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

4.
Catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida consists of four identical subunits, each containing one ferrous ion. The enzyme catalyzes ring cleavage of catechol, 3-methylcatechol, and 4-methylcatechol but shows only weak activity toward 4-ethylcatechol. Two mutants of catechol 2,3-dioxygenases (4ECR1 and 4ECR6) able to oxidize 4-ethylcatechol, one mutant (3MCS) which exhibits only weak activity toward 3-methylcatechol but retained the ability to cleave catechol and 4-methylcatechol, and one phenotypic revertant of 3MCS (3MCR) which had regained the ability to oxidize 3-methylcatechol were characterized by determining their Km and partition ratio (the ratio of productive catalysis to suicide catalysis). The amino acid substitutions in the four mutant enzymes were also identified by sequencing their structural genes. Wild-type catechol 2,3-dioxygenase was inactivated during the catalysis of 4-ethylcatechol and thus had a low partition ratio for this substrate, whereas the two mutant enzymes, 4ECR1 and 4ECR6, had higher partition ratios for it. Similarly, mutant enzyme 3MCS had a lower partition ratio for 3-methylcatechol than that of 3MCR. Molecular oxygen was required for the inactivation of the wild-type enzyme by 4-ethylcatechol and of 3MCS by 3-methylcatechol, and the inactivated enzymes could be reactivated by incubation with FeSO4 plus ascorbic acid. The enzyme inactivation is thus most likely mechanism based and occurred principally by oxidation and/or removal of the ferrous ion in the catalytic center. In general, partition ratios for catechols lower than 18,000 did not support bacterial growth. A possible meaning of the critical value of the partition ratio is discussed.  相似文献   

5.
Pseudomonas putida GJ31 is able to simultaneously grow on toluene and chlorobenzene. When cultures of this strain were inhibited with 3-fluorocatechol while growing on toluene or chlorobenzene, 3-methylcatechol or 3-chlorocatechol, respectively, accumulated in the medium. To establish the catabolic routes for these catechols, activities of enzymes of the (modified) ortho- and meta-cleavage pathways were measured in crude extracts of cells of P. putida GJ31 grown on various aromatic substrates, including chlorobenzene. The enzymes of the modified ortho-cleavage pathway were never present, while the enzymes of the meta-cleavage pathway were detected in all cultures. This indicated that chloroaromatics and methylaromatics are both converted via the meta-cleavage pathway. Meta cleavage of 3-chlorocatechol usually leads to the formation of a reactive acylchloride, which inactivates the catechol 2,3-dioxygenase and blocks further degradation of catechols. However, partially purified catechol 2,3-dioxygenase of P. putida GJ31 converted 3-chlorocatechol to 2-hydroxy-cis,cis-muconic acid. Apparently, P. putida GJ31 has a meta-cleavage enzyme which is resistant to inactivation by the acylchloride, providing this strain with the exceptional ability to degrade both toluene and chlorobenzene via the meta-cleavage pathway.  相似文献   

6.
Genes encoding 3-phenylcatechol dioxygenases were cloned from the chlorobiphenyl-degrading Pseudomonas putida strain OU83, using broad-host-range cosmid vector pCP13. Restriction enzyme analysis of DNA from 2,3-dioxygenase-positive chimeric cosmids showed DNA inserts ranging in size from 6.0 to 30 kilobases. The origin of the DNA insert in hybrid clones was established by using 32P-labeled hybrid clones (pOH101 and pOH810). A 2.3-kilobase HindIII fragment was common to two clones. The 2,3-dioxygenase from the parent P. putida strain, OU83, and the recombinant clones (pOH101 and pOH8101) showed similar characteristics as determined by isoelectric focusing and polyacrylamide gel electrophoresis. The 2,3-dioxygenase from the Escherichia coli recombinant cosmid showed a pI of 5.0, a Km of 14 microM, and broad substrate activity with catechol, 4-chlorocatechol, 4-methylcatechol, and 2,3-dihydroxybiphenyl.  相似文献   

7.
A Khan  R Tewari    S Walia 《Applied microbiology》1988,54(11):2664-2671
Genes encoding 3-phenylcatechol dioxygenases were cloned from the chlorobiphenyl-degrading Pseudomonas putida strain OU83, using broad-host-range cosmid vector pCP13. Restriction enzyme analysis of DNA from 2,3-dioxygenase-positive chimeric cosmids showed DNA inserts ranging in size from 6.0 to 30 kilobases. The origin of the DNA insert in hybrid clones was established by using 32P-labeled hybrid clones (pOH101 and pOH810). A 2.3-kilobase HindIII fragment was common to two clones. The 2,3-dioxygenase from the parent P. putida strain, OU83, and the recombinant clones (pOH101 and pOH8101) showed similar characteristics as determined by isoelectric focusing and polyacrylamide gel electrophoresis. The 2,3-dioxygenase from the Escherichia coli recombinant cosmid showed a pI of 5.0, a Km of 14 microM, and broad substrate activity with catechol, 4-chlorocatechol, 4-methylcatechol, and 2,3-dihydroxybiphenyl.  相似文献   

8.
Liu Y  Zhang J  Zhang Z 《Biodegradation》2004,15(3):205-212
A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol > 3,4-dihydroxyphenanthrene > 3-chlorocatechol.  相似文献   

9.
Abstract A 2,3-dihydroxybiphenyl-1,2-dioxygenase gene has been cloned from chromosomal DNA of Pseudomonas sp. DJ-12 which can grow on biphenyl or 4-chlorobiphenyl as the sole carbon and energy source. Enzymatic and immunochemical properties of the cloned 2,3-dihydroxybiphenyl-1,2-dioxygenase were characterized, and compared with those of P. pseudoalcaligenes KF707, Pseudomonas sp. KKS102, and P. putida OU83. The dioxygenase of Pseudomonas sp. DJ-12 was similar to those of P. pseudoalcaligenes KF707, and Pseudomonas sp. KKS102, but significantly different from that of P. putida OU83 in electrophoretic mobilities on native PAGE and SDS-PAGE. The dioxygenases of Pseudomonas sp. DJ-12 and P. putida OU83 exhibited the highest ring-fission activity to 3-methylcatechol, and those of P. pseudoalcaligenes KF707 and Pseudomonas sp. KKS102 to 2,3-dihydroxybiphenyl among 2,3-dihydroxybiphenyl, catechol, 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol as substrates. 2,3-dihydroxybiphenyl-1,2-dioxygenase of P. pseudoalcaligenes KF707 was immunochemically related to that of Pseudomonas sp. KKS102, but was different from those of Pseudomonas sp. DJ-12 and P. putida OU83.  相似文献   

10.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS-polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 microM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 microM, while the mutant enzyme loosened substrate inhibition.  相似文献   

11.
The reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol 1,2-dioxygenase and catechol 2,3-dioxygenase from Pseudomonas putida were examined. Both 3-substituted catechols are oxidized by catechol 2,3-dioxygenase at approximately 30% of the rate observed for catechol oxidation by this enzyme. Analysis of the products of the reactions showed that ring cleavage occurs in a normal fashion between carbons 2 and 3 of the alternate substrates. 3-Ethylcatechol is oxidized by catechol 1,2-dioxygenase at about 6% of the rate of catechol oxidation; ring cleavage occurs between carbons 1 and 2 to give 2-ethyl-cis,cis-muconic acid. However, 3-(methylthio)catechol is a very poor substrate for catechol 1,2-dioxygenase (0.8% of the rate of catechol), but it is a potent competitive inhibitor (Ki = 0.6 microM). The effects of 3-(methylthio)catechol and 3-ethylcatechol on the visible and EPR spectra of catechol 1,2-dioxygenase are also reported.  相似文献   

12.
Three catechol 2,3-dioxygenases for biphenyl, naphthalene/salicylate, and toluene/xylene oxidation were cloned from Achromobacter xylosoxidans KF701, Pseudomonas putida (NAH7), and Pseudomonas sp. (pWWO). The cloned catechol 2,3-dioxygenases were identified by enzymatic activity assay in addition to yellow bands on polyacrylamide gel after electrophoresis and activity staining. All of the cloned catechol 2,3-dioxygenases exhibited their highest activities on catechol as a substrate compared with catechol derivatives including 4-chlorocatechol, 3-methylcatechol, and 4-methylcatechol. The cloned catechol 2,3-dioxygenases are not fused proteins but were significantly different from one another in their electrophoretic mobilities on nondenaturing 7.5%-polyacrylamide gel.  相似文献   

13.
The 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. strain BN6 (BphC1-BN6) differs from most other extradiol dioxygenases by its ability to oxidize 3-chlorocatechol to 3-chloro-2-hydroxymuconic semialdehyde by a distal cleavage mechanism. The turnover of different substrates and the effects of various inhibitors on BphC1-BN6 were compared with those of another 2,3-dihydroxybiphenyl dioxygenase from the same strain (BphC2-BN6) as well as with those of the archetypical catechol 2,3-dioxygenase (C23O-mt2) encoded by the TOL plasmid. Cell extracts containing C23O-mt2 or BphC2-BN6 converted the relevant substrates with an almost constant rate for at least 10 min, whereas BphC1-BN6 was inactivated significantly within the first minutes during the turnover of all substrates tested. Furthermore, BphC1-BN6 was much more sensitive than the other two enzymes to inactivation by the Fe(II) ion-chelating compound o-phenanthroline. The reason for inactivation of BphC1-BN6 appeared to be the loss of the weakly bound ferrous ion, which is the cofactor in the catalytic center. A mutant enzyme of BphC1-BN6 constructed by site-directed mutagenesis showed a higher stability to inactivation by o-phenanthroline and an increased catalytic efficiency for the conversion of 2,3-dihydroxybiphenyl and 3-methylcatechol but was still inactivated during substrate oxidation.  相似文献   

14.
Abstract A Pseudomonas sp. strain WR401 was isolated for growth on 3-, 4-, and 5-methylsalicylate. The organism was capable of growth on o -toluate. The data on enzyme activities in cell-free extracts, DHB dehydrogenase and catechol 2,3-dioxygenase, as well as the cooxidation of the substrate analog 2-chlorobenzoate yielding 3-chlorocatechol indicated a pathway for o -toluate degradation through 6-methyldihydrodihydroxybenzoate, 3-methylcatechol and further through the meta -pathway. In contrast to other toluate dioxygenating enzymes found in m - and p -toluate degrading organisms, strain WR401 was able to dioxygenate a wider range of chlorobenzoates including 2-chlorobenzoate.  相似文献   

15.
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.  相似文献   

16.
2,4,5-Trihydroxytoluene (THT) oxygenase from Burkholderia sp. strain DNT catalyzes the conversion of THT to an unstable ring fission product. Biochemical and genetic studies of THT oxygenase were undertaken to elucidate the mechanism of the ring fission reaction. The THT oxygenase gene (dntD) was previously localized to the 1.2-kb DNA insert subcloned in the recombinant plasmid designated pJS76 (W. C. Suen and J. C. Spain, J. Bacteriol. 175:1831–1837, 1993). Analysis of the deduced amino acid sequence of DntD revealed the presence of the highly conserved residues characteristic of the catechol 2,3-dioxygenase gene family I. The deduced amino acid sequence of DntD corresponded to a molecular mass of 35 kDa. The native molecular masses for the THT oxygenase estimated by using gel filtration chromatography and nondenaturing gel electrophoresis were 67.4 and 77.8 kDa, respectively. The results suggested that the native protein consists of two identical subunits. The colorless protein contained 2 mol of iron per mol of protein. Stimulation of activity in the presence of ferrous iron and ascorbate suggested a requirement for ferrous iron in the active site. The properties of the enzyme are similar to those of the catechol 2,3-dioxygenases (meta-cleavage dioxygenases). In addition to THT, the enzyme exhibited activity towards 1,2,4-benzenetriol, catechol, 3- and 4-methylcatechol, and 3- and 4-chlorocatechol. The chemical analysis of the THT ring cleavage product showed that the product was 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid, consistent with extradiol ring fission of THT.  相似文献   

17.
The meta-cleavage operon of the TOL plasmid pWW0 of Pseudomonas putida contains 13 genes responsible for the oxidation of benzoate and toluates to Krebs cycle intermediates via estradiol (meta) cleavage of (methyl)catechol. The functions of all the genes are known with the exception of xylT. We constructed pWW0 mutants defective in the xylT gene, and found that these mutants were not able to grow on p-toluate while they were still capable of growing on benzoate and m-toluate. In the xylT mutants, all the meta-cleavage enzymes were induced by p-toluate with the exception of catechol 2,3-dioxygenase whose activity was 1% of the p-toluate-induced activity in wild-type cells. Addition of 4-methylcatechol to m-toluate-grown wild-type and xylT cells resulted in the inactivation of catechol 2,3-dioxygenase in these cells. In the wild-type strain but not in the xylT mutant, the catechol 2,3-dioxygenase activity was regenerated in a short time. The regeneration of the catechol 2,3-dioxygenase activity was also observed in H2O2-treated wild-type cells, but not in H2O2-treated xylT cells. We concluded that the xylT product is required for the regeneration of catechol 2,3-dioxygenase.  相似文献   

18.
1. An organism isolated from sewage and identified as an Alcaligenes sp. utilized benzenesulphonate, toluene-p-sulphonate or phenylethane-p-sulphonate as sole source of carbon and energy for growth. Higher alkylbenzenesulphonate homologues and the hydrocarbons, benzene, toluene, phenylethane and 1-phenyldodecane were not utilized. 2. 2-Phenylpropanesulphonate was metabolized to 4-isopropylcatechol. 3. 1-Phenylpropanesulphonate was metabolized to an ortho-diol, which was tentatively identified, in the absence of an authentic specimen, as 4-n-propylcatechol. 4. In the presence of 4-isopropylcatechol, which inhibited catechol 2,3-dioxygenase, 4-ethylcatechol accumulated in cultures growing on phenylethane-p-sulphonate. 5. Authentic samples of catechol, 3-methylcatechol, 4-methylcatechol, 4-ethylcatechol and 3-isopropylcatechol were oxidized by heat-treated extracts to the corresponding 2-hydroxyalkylmuconic semialdehydes. Ring cleavage occurred between C-2 and C-3. 6. The catechol derived from 1-phenylpropanesulphonate was oxygenated by catechol 2,3-dioxygenase to a compound with all the properties of a 2-hydroxyalkylmuconic semialdehyde, but it was not rigorously identified. 7. The catechol 2,3-dioxygenase induced by growth on benzenesulphonate, toluene-p-sulphonate or phenylethane-p-sulphonate showed a constant ratio of specific activities with catechol, 3-methylcatechol, 4-methylcatechol and 4-ethylcatechol that was independent of the growth substrate. At 60°C, activity towards these substrates declined at an identical first-order rate. 8. Enzymes of the `ortho' pathway of catechol metabolism were present in small amounts in cells grown on benzenesulphonate, toluene-p-sulphonate or phenylethane-p-sulphonate. 9. The catechol 1,2-dioxygenase oxidized the alkylcatechols, but the rates and the total extents of oxidation were less than for catechol itself. The oxidation products of these alkylcatechols were not further metabolized.  相似文献   

19.
The 2,3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas xenophaga strain BN6 (BphC1) oxidizes 3-chlorocatechol by a rather unique distal ring cleavage mechanism. In an effort to improve the efficiency of this reaction, bphC1 was randomly mutated by error-prone PCR. Mutants which showed increased activities for 3-chlorocatechol were obtained, and the mutant forms of the enzyme were shown to contain two or three amino acid substitutions. Variant enzymes containing single substitutions were constructed, and the amino acid substitutions responsible for altered enzyme properties were identified. One variant enzyme, which contained an exchanged amino acid in the C-terminal part, revealed a higher level of stability during conversion of 3-chlorocatechol than the wild-type enzyme. Two other variant enzymes contained amino acid substitutions in a region of the enzyme that is considered to be involved in substrate binding. These two variant enzymes exhibited a significantly altered substrate specificity and an about fivefold-higher reaction rate for 3-chlorocatechol conversion than the wild-type enzyme. Furthermore, these variant enzymes showed the novel capability to oxidize 3-methylcatechol and 2,3-dihydroxybiphenyl by a distal cleavage mechanism.  相似文献   

20.
李朔  许楹  周宁一 《微生物学通报》2017,44(7):1513-1524
【目的】研究Sphingomonas sp.YL-JM2C菌株的生长特性,确定以三氯卡班作为碳源的生长情况。挖掘菌株YL-JM2C潜在的邻苯二酚1,2-双加氧酶及邻苯二酚2,3-双加氧酶基因,在大肠杆菌(Escherichia coli)中异源表达邻苯二酚双加氧酶基因并研究其酶学性质。【方法】优化S.sp.YL-JM2C菌株以三氯卡班作为碳源时的培养条件,并利用全自动生长曲线测定仪测定菌株生长情况,绘制生长曲线。通过生物信息学方法挖掘潜在的邻苯二酚双加氧酶基因,并分别在Escherichia coli BL21(DE3)中进行异源表达,通过AKTA快速纯化系统纯化蛋白,分别以邻苯二酚、3-和4-氯邻苯二酚为底物检测重组蛋白的酶学特性。【结果】菌株在pH为7.0-7.5时生长最优。在以浓度为4-8 mg/L的三氯卡班做为底物时,菌株适宜生长。当R2A培养基仅含有0.01%酵母提取物和无机盐时,加入终浓度为4 mg/L的三氯卡班可促进菌株生长。挖掘到6个潜在的邻苯二酚双加氧酶基因stcA1、stcA2、stcA3、stcE1、stcE2和stcE3,表达并通过粗酶液分析证明其中5个基因stcA1、stcA2、stcA3、stcE1和stcE2编码的酶均具有邻苯二酚双加氧酶和氯邻苯二酚双加氧酶的活性;纯化酶的底物范围研究揭示了StcA1、StcA2和StcA3均属于Ⅱ型邻苯二酚1,2-双加氧酶,StcE1和StcE2为两个新型邻苯二酚2,3-双加氧酶;它们酶动力学分析研究证明了5个酶对邻苯二酚的亲和力和催化效率最高,4-氯邻苯二酚次之。【结论】在同一菌株中发现了5个具有功能的邻苯二酚双加氧酶基因,stcA1、stcA2和stcA3编码的酶均属于Ⅱ型邻苯二酚1,2-双加氧酶,stcE1和stcE2为两个新型邻苯二酚2,3-双加氧酶编码基因。5个酶均具有催化邻苯二酚和氯邻苯二酚开环反应的功能,这为更好地理解微生物基因组内代谢邻苯二酚及其衍生物氯代邻苯二酚基因的多样性奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号