首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

2.
Organisms with coexisting sexual and asexual populations are ideal models for studying the consequences of either reproductive mode on the quantitative genetic architecture of life-history traits. In the aphid Rhopalosiphum padi, lineages differing in their sex investment coexist but all share a common parthenogenetic phase. Here, we studied multiple genotypes of R. padi specialized either for sexual and asexual reproduction and compared their genetic variation in fitness during the parthenogenetic phase. Specifically, we estimated maintenance costs as standard metabolic rate (SMR), together with fitness (measured as the intrinsic rate of increase and the net reproductive rate). We found that genetic variation (in terms of broad-sense heritability) in fitness was higher in asexual genotypes compared with sexual genotypes. Also, we found that asexual genotypes exhibited several positive genetic correlations indicating that body mass, whole-animal SMR, and apterous individuals production are contributing to fitness. Hence, it appears that in asexual genotypes, energy is fully allocated to maximize the production of parthenogenetic individuals, the simplest possible form of aphid repertoire of life-histories strategies.  相似文献   

3.
Organisms reproducing by cyclical parthenogenesis combine the benefits of both sexual and asexual reproduction within the same life cycle. Few studies have examined the evolution of variation in the pattern of investment in parthenogenetic compared to sexual reproduction. Seven clones of Daphnia pulex (Crustacea: Cladocera) varying in allocation to sexual reproduction, as measured by the production of males, were raised in isolation and together in a microcosm to study the pattern of sexual reproduction and the effect of this variation on clone fitness. Sex allocation for clones raised together a microcosm was similar to their allocation when raised in isolation, suggesting a genetic basis to the variation. Three clones showed a cost of producing males that lead to their extinction after about 30 days due to the lack of females required for the clones to persist by parthenogenetic reproduction. The remaining four clones persisted until the end of the 72-day experiment. Clones with little or no allocation to males showed no increased allocation to sexual females. The seven clones showed a greater variation in estimated fitness through male and female function than in total estimated fitness. The clone with the greatest total fitness gained most of its fitness through male function but also had a relatively high fitness through female function. Although one clone produced only females it had the next highest fitness. The three clones that went extinct because of a high investment in males had estimated fitness as high as some clones that persisted in the microcosm because of a higher investment in parthenogenetic reproduction. The similarity in total fitness among clones suggests that Daphnia pulex populations in temporary habitats maintain a sex polymorphism where different genotypes vary-in functional gender ranging from female to primarily male.  相似文献   

4.
Prevalence of sexual reproduction is still enigma. The main character of sex is alleles mixing that could be advantageous either in unstable environment (in this case sex provides high temp of evolution) or in unstable genotype (in this case sex provides purge of genome from deleterious mutations). As long as not all species inhabit highly changeable environments, variation of genotypes is more important factor. As the majority of new mutations is deleterious, effective mechanism of genome purging is needed. Maintenance of "purging mechanism" may be a single role of sex. Two promising mutational hypotheses--clade selection (Muller's ratchet and Nunney's hypothesis) and mutational deterministic hypothesis of Kondrashov claim that more effective elimination of slightly-deleterious mutations provides main advantage to sexual population in comparison with asexual. Despite prima facie similarity, these hypotheses differ in mechanisms, work at different temporal scales and have different consequences. Kondrashov's hypothesis reveals short-term advantage of sexual reproduction, and thus, based on the individual selection. Clade selection displays long-term advantage of sexual reproduction that could be realized only by group selection. The role of mobile elements in evolution of sexual reproduction is also discussed. Firstly, mobile elements ("sexual molecular parasites") can complicate the problem: having been domesticated in asexual genomes and remaining active in sexual genomes they lead to higher mutational rate in sexual organisms and so violate assumption critical for both mutational hypotheses of "other things being equal". Secondly, mobile elements could be leader factor of origin of sex (hypothesis proposed by Hickey). Because theory of group selection could explain maintenance of sex, but not its origin, mobile elements could induce the origin of sex but were not able to maintain it, so the next scenario of evolution of sex is proposed: mobile elements induced origin of sex, which was established later by group selection because provided long term benefit (Muller's ratchet and Nunney's hypothesis). So, on all stages of evolution, sex was not advantageous for the organism per se.  相似文献   

5.
Certain types of asexual reproduction lead to loss of complementation, that is unmasking of recessive deleterious alleles. A theoretical measure of this loss is calculated for apomixis, automixis and endomitosis in the cases of diploidy and polyploidy. The effect of the consequent unmasking of deleterious recessive mutations on fitness is also calculated. Results show that, depending on the number of lethal equivalents and on the frequency of recombination, the cost produced by loss of complementation after few generations of asexual reproduction may be greater than the two-fold cost of meiosis. Maintaining complementation may, therefore, provide a general short-term advantage for sexual reproduction. Apomixis can replace sexual reproduction under a wide range of parameters only if it is associated with triploidy or tetraploidy, which is consistent with our knowledge of the distribution of apomixis.  相似文献   

6.
Synergism among mutations can lead to an advantage to sexual reproduction, provided mutation rates are high enough (the mutational deterministic hypothesis). Here we tested the idea that competition for food can increase the advantage to sexual reproduction, perhaps by increasing the synergism among mutations in asexual individuals. We compared the survivorship of sexual and asexual snails (Potamopyrgus antipodarum) under two treatments: starved and fed. We predicted higher mortality for asexual snails when starved, but found that sexual and asexual individuals survived at the same rate, independent of treatment. These results suggest that the distribution of sex in this snail may not be explained by variation in competition among populations.  相似文献   

7.
Many organisms considered as strictly clonal may in fact experience some rare events of sexual reproduction with their sexual relatives. However, the rate of sexual–asexual gene flow has rarely been assessed mainly because its evaluation is difficult to achieve in the field. In the cyclically parthenogenetic aphid Rhopalosiphum padi , two main sets of lineages, differing in their investment in sexual reproduction and in their genetic attributes, co-exist even at a very fine scale: the 'sexual' lineages which have a full commitment to the sexual reproduction, and the 'facultatively asexual' lineages, which allocate investment in the sexual and parthenogenetic reproduction. This system offers a unique opportunity to tackle the genetic interactions between two contrasting reproductive modes. Here, we provide evidence that gene flow occurred between sexual and facultatively asexual lineages of R. padi. We carefully examined the shuffling in phenotypic and genotypic variation following a sexual reproduction event that took place in the field. Combining genotypic data and phenotypic measurements showed that this gene mixing led to the production of a wide array of reproductive modes, including strictly asexual lineages. Finally, we discuss the central role played by facultatively asexual lineages on the maintenance of reproductive mode variation.  相似文献   

8.
Hill JA  Otto SP 《Genetics》2007,175(3):1419-1427
In facultatively sexual species, lineages that reproduce asexually for a period of time can accumulate mutations that reduce their ability to undergo sexual reproduction when sex is favorable. We propagated Saccharomyces cerevisiae asexually for approximately 800 generations, after which we measured the change in sexual fitness, measured as the proportion of asci observed in sporulation medium. The sporulation rate in cultures propagated asexually at small population size declined by 8%, on average, over this time period, indicating that the majority of mutations that affect sporulation rate are deleterious. Interestingly, the sporulation rate in cultures propagated asexually at large population size improved by 11%, on average, indicating that selection on asexual function effectively eliminated most of the mutations deleterious to sporulation ability. These results suggest that pleiotropy between mutations' effects on asexual fitness and sexual fitness was predominantly positive, at least for the mutations accumulated in this experimental evolution study. A positive correlation between growth rate and sporulation rate among lines also provided evidence for positive pleiotropy. These results demonstrate that, at least under certain circumstances, selection acting on asexual fitness can help to maintain sexual function.  相似文献   

9.
Cyclically parthenogenetic animals such as aphids are able alternating sexual and asexual reproduction during its life cycle, and represent good models for studying short-term evolutionary consequences of sex. In aphids, different morphs, whether sexual or asexual, winged or wingless, are produced in response to specific environmental cues. The production of these morphs could imply a differential energy investment between the two reproductive phases (i.e., sexual and asexual), which can also be interpreted in terms of changes in genetic variation and/or trade-offs between the associated traits. In this study we compared the G-matrices of energy metabolism, life-history traits and morph production in 10 clonal lineages (genotypes) of the pea aphid, Acyrthosiphon pisum, during both sexual and asexual phases. The heritabilities (broad-sense) were significant for almost all traits in both phases; however the only significant genetic correlation we found was a positive correlation between resting metabolic rate and production of winged parthenogenetic females during the asexual phase. These results suggest the pea aphid shows some lineage specialization in terms of energy costs, but a higher specialization in the production of the different morphs (e.g., winged parthenogenetic females). Moreover, the production of winged females during the asexual phase appears to be more costly than wingless females. Finally, the structures of genetic variance-covariance matrices differed between both phases. These differences were mainly due to the correlation between resting metabolic rate and winged parthenogenetic females in the asexual phase. This structural difference would be indicating that energy allocation rules changes between phases, emphasizing the dispersion role of asexual morphs.  相似文献   

10.
Coexistence of sexual and asexual reproduction within the same individual is an intriguing problem, especially when it concerns homothallic haplonts, like the fungus Aspergillus nidulans. In this fungus asexual and sexual offspring have largely identical genotypes. This genetic model organism is an ideal tool to measure possible fitness effects of sex (compared to asex) resulting from causes other than recombination. In this article we show that slightly deleterious mutations accumulate at a lower rate in the sexual pathway than in the asexual pathway. This secondary sex advantage may contribute to the persistence of sexual spores in this fungus. We propose that this advantage results from intra-organismal selection of the fittest gametes or zygotes, which is more stringent in the costly sexual pathway.  相似文献   

11.
The frozen niche variation hypothesis proposes that asexual clones exploit a fraction of a total resource niche available to the sexual population from which they arise. Differences in niche breadth may allow a period of coexistence between a sexual population and the faster reproducing asexual clones. Here, we model the longer term threat to the persistence of the sexual population from an accumulation of clonal diversity, balanced by the cost to the asexual population resulting from a faster rate of accumulation of deleterious mutations. We use Monte-Carlo simulations to quantify the interaction of niche breadth with accumulating deleterious mutations. These two mechanisms may act synergistically to prevent the extinction of the sexual population, given: (1) sufficient genetic variation, and consequently niche breadth, in the sexual population; (2) a relatively slow rate of accumulation of genetic diversity in the clonal population; (3) synergistic epistasis in the accumulation of deleterious mutations.  相似文献   

12.
Cases of coexisting sexual and asexual relatives are puzzling, as evolutionary theory predicts that competition for the same ecological niches should lead to the exclusion of one or the other population. In the cyclically parthenogenetic aphid, Rhopalosiphum padi, sexual and facultative asexual lineages are admixed in space at the time of sexual reproduction. We investigated how the interaction of reproductive mode and environment can lead to temporal niche differentiation. We demonstrated theoretically that differential sensitivity of sexual and facultatively asexual aphids to an environmental parameter (mating host suitability) shapes the two strategies: whereas the sexual lineages switch earlier to the production of sexual forms, the facultative asexual lineages delay and spread out their investment in sexual reproduction. This predicted pattern of niche specialization is in agreement with the temporal structure revealed in natura by demographic and genetic data. We propose that partial loss of sex by one pool of aphids and subsequent reduction in gene flow between lineages may favour temporal specialization through disruptive selection.  相似文献   

13.
Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this prediction, we estimated the accumulation rate of coding (nonsynonymous) mutations, which are expected to be deleterious, in parts of one mitochondrial (COI) and two nuclear (Actin and Hsp70) genes in six independently derived asexual lineages and related sexual species of Timema stick insects. We found signatures of increased coding mutation accumulation in all six asexual Timema and for each of the three analyzed genes, with 3.6- to 13.4-fold higher rates in the asexuals as compared with the sexuals. In addition, because coding mutations in the asexuals often resulted in considerable hydrophobicity changes at the concerned amino acid positions, coding mutations in the asexuals are likely associated with more strongly deleterious effects than in the sexuals. Our results demonstrate that deleterious mutation accumulation can differentially affect sexual and asexual lineages and support the idea that deleterious mutation accumulation plays an important role in limiting the long-term persistence of all-female lineages.  相似文献   

14.
There is evidence that asexual reproduction has a long-term disadvantage when compared to sexual reproduction. This disadvantage is usually assumed to arise from the more efficient incorporation of advantageous mutations by sexual populations. We consider here the effect on asexual and sexual populations of changes in the fitness of harmful mutations. It is shown that the re-establishment of equilibrium following environmental change is generally faster in sexual populations, and that the mutational load experienced by the sexual population can be significantly less during this period than that experienced by an asexual one. Changes in the fitness of harmful mutations may therefore impose a greater long-term disadvantage on asexual populations than those which are sexual.  相似文献   

15.
The advantage of sexual reproduction remains a puzzle for evolutionary biologists. Everything else being equal, asexual populations are expected to have twice the number of offspring produced by similar sexual populations. Yet, asexual species are uncommon among higher eukaryotes. In models assuming small populations, high mutation rates, or frequent environmental changes, sexual reproduction seems to have at least a two-fold advantage over asexuality. But the advantage of sex for large populations, low mutation rates, and rare or mild environmental changes remains a conundrum. Here we show that without recombination, rare advantageous mutations can result in increased accumulation of deleterious mutations ('evolutionary traction'), which explains the long-term advantage of sex under a wide parameter range.  相似文献   

16.
The reproductive mode of facultative parthenogens allows recessive mutations that accumulate during the asexual phase to be unmasked following sexual reproduction. Longer periods of asexual reproduction should increase the accumulation of deleterious mutations within individuals, reduce population-level genetic diversity via competition and increase the probability of mating among close relatives. Having documented that the investment in sexual reproduction differs among populations and clones of Daphnia pulicaria , we ask if this variation is predictive of the level of inbreeding depression across populations. In four lake populations that vary in sex investment, we raised multiple families (mother, field-produced daughter, laboratory-produced daughter) on high food and estimated the fitness reduction in both sexually produced offspring relative to the maternal genotype. Inbred individuals had lower fitness than their field-produced siblings. The magnitude of fitness reduction in inbred offspring increased as population-level investment in sex decreased. However, there was less of a fitness reduction following sex in the field-produced daughters, suggesting that many field-collected mothers were involved in outcross mating.  相似文献   

17.
Recessive mutations and the maintenance of sex in structured populations   总被引:3,自引:0,他引:3  
Agrawal AF  Chasnov JR 《Genetics》2001,158(2):913-917
The evolutionary maintenance of sexual reproduction remains a controversial problem. It was recently shown that recessive deleterious mutations create differences in the mutation load of sexual vs. asexual populations. Here we show that low levels of population structure or inbreeding can greatly enhance the importance of recessive deleterious mutations in the context of sexual vs. asexual populations. With population structure, the cost of sex can be substantially reduced or even eliminated for realistic levels of dominance.  相似文献   

18.
Life‐history theory postulates that evolution is constrained by trade‐offs (i.e., negative genetic correlations) among traits that contribute to fitness. However, in organisms with complex life cycles, trade‐offs may drastically differ between phases, putatively leading to different evolutionary trajectories. Here, we tested this possibility by examining changes in life‐history traits in an aphid species that alternates asexual and sexual reproduction in its life cycle. The quantitative genetics of reproductive and dispersal traits was studied in 23 lineages (genotypes) of the bird cherry‐oat aphid Rhopalosiphum padi, during both the sexual and asexual phases, which were induced experimentally under specific environmental conditions. We found large and significant heritabilities (broad‐sense) for all traits and several negative genetic correlations between traits (trade‐offs), which are related to reproduction (i.e., numbers of the various sexual or asexual morphs) or dispersal (i.e., numbers of winged or wingless morphs). These results suggest that R. padi exhibits lineage specialization both in reproductive and dispersal strategies. In addition, we found important differences in the structure of genetic variance–covariance matrices ( G ) between phases. These differences were due to two large, negative genetic correlations detected during the asexual phase only: (1) between fecundity and age at maturity and (2) between the production of wingless and winged parthenogenetic females. We propose that this differential expression in genetic architecture results from a reallocation scheme during the asexual phase, when sexual morphs are not produced. We also found significant G × E interaction and nonsignificant genetic correlations across phases, indicating that genotypes could respond independently to selection in each phase. Our results reveal a rather unique situation in which the same population and even the same genotypes express different genetic (co)variation under different environmental conditions, driven by optimal resource allocation criteria.  相似文献   

19.
Natural populations of sexually reproducing Drosophila mercatorum are capable of a very low rate of parthenogenesis, but this mode of reproduction has apparently never characterized an entirely asexual population in this species. The high abortion rate observed in laboratory parthenogenetic lines suggests that developmental constraints may cause the failure of this trait to spread in nature. To investigate the basis of this developmental instability and how it may affect the evolution of parthenogenesis in natural populations, early embryonic development was compared between one sexual and four parthenogenetic laboratory strains of D. mercatorum. There is a large amount of variation within a given parthenogenetic strain, suggesting that parthenogenesis is associated with a general breakdown of developmental stability. There is relatively little variation among different parthenogenetic strains, suggesting that most abortions are due to a feature inherent to parthenogenetic reproduction rather than a feature of a particular genome. Likewise, there is little variation between parthenogenetic and sexual strains in the causes of abortions, suggesting that the developmental problems encountered by parthenogenetic lineages are not unique to parthenogens. Thus, the failure of parthenogenesis to spread within D. mercatorum can be attributed to no particular developmental constraint per se operating after the initiation of embryogenesis. However, the overall increase in all developmental problems that occurs with the transition from sexual to parthenogenetic development suggests that the high degree of developmental instability associated with parthenogenesis may be considered a developmental constraint in its own right.  相似文献   

20.
Despite the obvious efficiencies of many forms of asexual reproduction, sexual reproduction abounds. Asexual species, for the most part, are relatively short-lived offshoots of sexual ancestors. From the nineteenth century, it has been recognized that, since there is no obvious advantage to the individuals involved, the advantages of sexual reproduction must be evolutionary. Furthermore, the advantage must be substantial; for example, producing males entails a two-fold cost, compared to dispensing with them and reproducing by parthenogenetic females. There are a large number of plausible hypotheses. To me the most convincing of these are two. The first hypothesis, and the oldest, is that sexual reproduction offers the opportunity to produce recombinant types that can make the population better able to keep up with changes in the environment. Although the subject of a great deal of work, and despite its great plausibility, the hypothesis has been very difficult to test by critical observations or experiments. Second, species with recombination can bunch harmful mutations together and eliminate several in a single “genetic death.” Asexual species, can eliminate them only in the same genotype in which they occurred. If the rate of occurrence of deleterious mutations is one or more per zygote, some mechanism for eliminating them efficiently must exist. A test of this mutation load hypothesis for sexual reproduction, then, is to find whether deleterious mutation rates in general are this high-as Drosophila data argue. Unfortunately, although molecular and evolutionary studies can give information on the total mutation rate, they cannot determine what fraction are deleterious. In addition, there are short discussions of the advantages of diploidy, anisogamy, and separate sexes. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号